

Tasks performed in
porting GVRS Java
API to C
Updated 6 January 2025

Introduction
These notes are intended to support developers who are considering the process of porting the GVRS

API from either Java or C to an alternate programming language.

Recently, the Gridfour team ported the original Java API to the C programming language. These notes

provide a brief description of the steps that were followed to port the API from its original Java

implementation to C. Our hope is that this information will help developers plan their own porting

efforts. By illustrating how one porting effort broke out the functional elements of the API, these notes

should also help developers identify the architectural elements needed for a successful port.

The sequence of tasks that were used for the port to C reflects the habits and requirements of the

development team. It is not necessarily the only, or even best, way to proceed. The description below

makes notes of alternate approaches. In general, the development team preferred to operate in short

sprints, with testing and design reviews at the end of each.

The bulk of the coding and API design was conducted by a single volunteer developer working part time

over a period of months. So the implementation sequence described below is essentially serial in nature.

Time estimates are based on notes kept during the development effort.

In the beginning, we underestimated how much different the C API would be from the Java API. The

primary differences were due to object-oriented versus non-object-oriented implementations and, to a

lesser degree, the use of pointers and explicit memory management. For developers working in other

languages, the availability of the two existing projects should provide insights suitable to most modern

programming environments.

General approach
The GVRS API was ported to C in four phases:

1. Implement the ability to read GVRS files stored without compression.

2. Implement the ability to read GVRS files stored with compression.

3. Implement the ability to write GVRS files without compression.

4. Implement the ability to write GVRS files with compression.

It is possible to follow alternate sequences. For example, data compression could be deferred until after

both the read and write operations are complete. Or, if a developer were primarily concerned with the

use of GVRS as a tool for maintaining a virtual raster without persistent storage of data, then it would be

feasible to implement write operations first with only a partial set of read operations and no

consideration of data compression.

Resources for the developer
The GVRS FAQ answers frequently asked questions about the GVRS API at

https://github.com/gwlucastrig/gridfour/wiki/A-GVRS-FAQ.

A number of web articles describing the concepts and algorithms used in the GVRS API is available at the

“Gridfour Project Notes” web page at https://gwlucastrig.github.io/GridfourDocs/notes/index.html.

The GVRS file format is specified in the document “The Gridfour Virtual Raster Store (GVRS) File Format”

available at https://gwlucastrig.github.io/GridfourDocs/notes/GvrsFileFormat_1_04.pdf

One of the key components of the GVRS API, the tile-cache, is described in “Managing a Virtual Raster

using a Tile-Cache Algorithm” at https://gwlucastrig.github.io/GridfourDocs/notes/VirtualRaster.html

The Java software distribution for the Gridfour project includes a number of test files under the path

“core/src/test/resources/org/gridfour/gvrs/SampleFiles”. A README.TXT file describes the content of

individual files in that directory.

The wiki pages for both the Java and C code distributions include “how to” articles that are intended to

illustrate the use of the API in applications and programs.

A small set of test programs for exercising GVRS functions are provided in the standard distribution in

the folder GvrsC/test.

https://github.com/gwlucastrig/gridfour/wiki/A-GVRS-FAQ
https://gwlucastrig.github.io/GridfourDocs/notes/index.html
https://gwlucastrig.github.io/GridfourDocs/notes/GvrsFileFormat_1_04.pdf
https://gwlucastrig.github.io/GridfourDocs/notes/VirtualRaster.html

Phase 1 Implement the ability to read GVRS files
GVRS files consist of a sequence of data primitives (integers, strings, floating-point values, etc.) that are

given in little-endian order as described in the GVRS File Format document cited above. The first step in

porting GVRS to a C API was to implement functions to read these primitives. To support this effort, we

introduced a number of test files to the Java software distribution. A file called

“SampleDataPrimitives.dat” provides a sequence of each of the various types used by GVRS. The layout

of the file is described in the README.TXT file included in the distribution.

Once we were able to read the data primitives successfully, we focused on reading the content of a

GVRS file. We were also concerned about ensuring that we could read files in a random-access order (a

key requirement in implementing the GVRS API). Each variable-length record in a GVRS file contains a

short header giving metadata about the record including record-type and size in bytes. We wrote a test

program to confirm that we could read the records from a file (ignoring their content) and tabulate a

count for each record type found in the file.

Next, we implemented the ability to read the file header and overall structural data for a GVRS file. In

order to confirm that we were reading the data from the header correctly, we implemented three main

functions (with supporting modules):

1. GvrsOpen – Opens a GVRS file, reads the header (creation dates, grid size, variable types, etc.)

and any internal directories. In C, GvrsOpen returns a pointer to a structure of type “Gvrs”

which is the main access point a GVRS file.

2. GvrsSummarize – Prints information from the Gvrs structure to standard output.

3. GvrsClose – closes a GVRS file and frees all memory associated with the “Gvrs” structure.

In the GVRS API, print statements are never included in the code, except in functions that include the

string “summarize” in their name. By writing an “open” and a “summarize” function, we could confirm

that we were accessing the header elements correctly.

 Finally, we implemented logic to access the content of a GVRS file. This effort involved a number of key

components. The C programming language does not provide a way of specifying scope for functions and

elements. Even so, some software components are treated as “public” and some are treated as

“internal”.

 Gvrs – the main structure used to hold resources such as file pointers, allocated memory, and

data elements needed for file access. Essentially, this structure is public in scope.

 GvrsElement – public structures and functions that allow application code to access data

elements from a GVRS raster (integer or floating point values at a particular grid cell location).

 Tile-Directory – internal structures and functions that let the API find the location of a particular

tile (subsection of the overall grid) within the body of the data file.

 Tile-Cache – internal structures and functions that maintain tiles in memory for rapid access by

application code.

 GvrsMetadata – public structures and elements that allow application code to access descriptive

information from a GVRS file. The ability to access metadata was not essential to reading the

main data from a GVRS file, so we deferred working on metadata until late in the

implementation process.

 Metadata-Directory – internal structures that let the API find the location of a particular

metadata element in the file. The ability to access metadata was not essential to reading the

main data from a GVRS file, so we deferred working on metadata until late in the

implementation process.

Phase 1 implement basic read operations
The following table lists the tasks that were performed when porting the Java API to C. The hour column

gives estimates of the time a single developer spent writing code.

Task Hours Description

 Read Data Primitives 16 Functions (.c files) and header (.h file) to read GVRS data primitives
from the SampleDataPrimitives.dat file. Implement stand-alone
test program to verify. A reference C implementation of the test
program is provided by Test000_ReadPrimitives.c

Read Variable-Length
Records

8 Stand-alone program to traverse a GVRS file, read the record
headers to determine record type and length, compute the
position of the next record, and advance through file. Verified
ability to read data primitives and navigate file successfully in
random-access sequence. A reference C implementation of the
test program is provided by Test001_ReadRecords.c

Read Header
(preliminary)

16 Define structure named “Gvrs” containing the most important
elements of header. Implement test program to print content of
header (involved GvrsOpen, GvrsSummarize, GvrsClose functions).

Extend header-reading
to read tile directory

16 Define structure for tile-directory. Read file directory from file and
include a reference to it in the “Gvrs” structure. Also include logic
to clean up resources in GvrsClose.

Read content of grid
(preliminary)

24 Define structure for GvrsElement, implement functions to read
integer-type data from one of the sample files. Because no tile
cache is implemented at this stage, access is very slow. The
important thing is to confirm correct data access.

Implement tile-cache
for reading

24 Implement a tile cache. As an enhancement, included a hash
table for mapping tile index to cache entries Ito expedite cache
searches). GVRS C implements its own hash table. Other
environments might include suitable hash implementations as part
of their standard libraries (a C++ implement could have used the
standard template library, etc.).

Performance and
refinement

24 Exercise code, tabulate initial performance statistics, refine
computations, code, etc. Verify resource disposal and memory
“free” operations.

Implement checksums
(optional)

8 Each record in a GVRS file carries a checksum that allows the
detection of file errors. Since transmission errors are rare in
modern hardware, we treated this step as optional. A lot of the
code was cut-and-pasted from the original Java source and then
modified for the C implementation.

Phase 1a implement metadata

Code for access metadata was a secondary concern for the C port, so it was deferred until later in the

process. Also, performance was a much lower concern for metadata, so this implementation generally

used simple data structures, sequential search logic, and “brute force” coding.

Task Hours Description

Read metadata
directory

4 Read metadata directory as part of GvrsOpen

Read specific metadata
records

4 Check metadata directory to see if there is a match for a specific
metadata ID (name and integer number), find file position and
read content.

API to provide
metadata content to
calling modules

16 Provide metadata to calling modules. Since metadata has several
data types (short, integer, float, double, string), this step involved a
lot of extra functions.

Phase 2 read compressed data
Samples of the ETOPO1 global-scale elevation data file are attached to the current release of the Java

API at https://github.com/gwlucastrig/gridfour/releases. These files provide good test subjects for

developing data compression

Task Hours Description

Bit-access functions 12 Implement bit-access functions for reading bits and bytes from a
compressed data stream

M-32 codes 8 Implement functions to read GVRS M-32 codes from byte streams.

Integer predictors 4-to-8 Implement predictors to be used in decoding integer data types
from source data (differencing predictor, linear predictor, and
triangle predictor). To a large degree, this was a code cut-and-
paste operation.

Basic access for
compressed data

8 Implement logic to detect when data is compressed, invoke the
appropriate decompressor, and extract data.

Huffman coding for
integer data

20 Implement logic to decompress Huffman-coded data streams. This
task required extra time due to performance issues. Ideally, future
developers will be able to leverage the lessons-learned from
existing code to expedite their efforts.

Deflate for integer data 4-to-24 Integrate the 3rd party Deflate software library into the GVRS API
for decompressing data stored in Deflate format. The level of
effort depends on the availability of Deflate on the local software
build environment. If Deflate is available, this should be
straightforward.

Floating-point
compression

16 Implement ability to decompress floating-point data. The floating-
point compression logic leverages from the work implemented for
integer compression, so this tasks requires the integer
implementation.

https://github.com/gwlucastrig/gridfour/releases

Phase 1 and 2 completion: documentation, user support
At the end of phase 1 and continuing into phase 2, we undertook an effort to extend the documentation

(using doxygen) and provide user support via the Gridfour wiki pages and development notes cited

above. We also undertook additional testing and example code implementations. This is an on-going

process and we do not have level-of-effort estimates available. Developers who wish to port the

Gridfour API should estimate time to write documentation based on their own standards and

requirements.

Phase 3 implement basic write operations
One of the more challenging parts of the GVRS API is the file-space management logic required to allow

GVRS to allocate, use, and re-use segments of the data file as the size of different data objects change.

Most of this functionality could be stubbed out or partially implemented in the early phases. A full

implementation was not required until data compression and metadata writing were introduced.

Task Hours Description

Write data primitives 8 Functions (.c files) and header (.h file) to write GVRS data
primitives. Implement stand-alone test program to verify.

Start Gvrs Builder 4 Create initial structure and functions for creating new Gvrs files.
Implement shell functions for GvrsBuilderCreate and
GvrsBuilderFree. Define grid and tile sizes. Populate opened-for-
writing element in output GVRS file.

Write initial GVRS file
Header

4 GvrsBuilder to write a GVRS file header and return a Gvrs
structure. Extend GvrsClose to stub final write operations when
closing a file, zero-out opened-for-writing element.

Element specifications 16 Add functions for GvrsBuilder to add element specifications when
creating a new GVRS file.

Write data values to
raster

24 Using row and column for grid cell, write data to appropriate tile.
Extend tile cache logic to initialize new tiles or fetch existing tiles.
Extend

Implement checksums
(optional)

8 Add code to GvrsClose to process records and compute
checksums.

Phase 4 write compressed data
Task Hours Description

Bit-access functions 8 Extend the bit-access functions to store bit and byte sequences

M-32 codes 4 Extend the GVRS M-32 functions to store codes to byte streams.

Integer predictors 4-to-8 Implement predictors to be used in encoding integer data types
from source data (differencing predictor, linear predictor, and
triangle predictor). To a large degree, this was a code cut-and-
paste operation.

Basic access for
compressed data

8 Modify tile-writing operations to compress data before storage

File-space management
code

16-32 Implement file-space management logic. The C logic was
sufficiently different from the original Java that this was essentially
new code. However, new porting efforts should be able to
leverage this work to reduce development time.

Huffman coding for
integer data

12 Implement logic to compress data using Huffman-coding data
streams. Much of the work should be a straight-forward port of
the C code.

Deflate for integer data 4 Integrate the 3rd party Deflate software library into the GVRS API
for compressing data stored in Deflate format.

Floating-point
compression

8 Implement ability to compress floating-point data. The floating-
point compression logic leverages from the work implemented for
integer compression, so this tasks requires the integer
implementation.

