
Preliminary Draft

i

Data Elements and Algorithms for the
Tinfour Library

A Triangulated Irregular Network (TIN) package written in Java

G. W. Lucas
February 2021

Copyright ©2016-2021 by G.W. Lucas. Permission to make and distribute verbatim copies of
this document is granted provided that its content is not modified in any manner. All other
rights reserved.

Preliminary Draft

ii

Author’s Note

This document is informal in nature. It is intended to provide assistance to developers. It is not a

scholarly work. That being said, I’d at least like to get it right. So, if you if you have corrections

or suggestions for improvements that would make this document more useful, feel free to let

me know.

Acknowledgements

I began the Tinfour project while registered in the Masters of Geographic Information Systems

program at Penn State University. Inspiration for the project is due, in large part, to Justine

Blanford whose course in Geospatial Analysis demonstrated just how interesting and useful that

topic can be. I am also grateful to my instructors Mike Renslow and Karen Schuckman who

introduced me to airborne lidar, the technology which set the bar so high for performance

considerations in the Tinfour software.

I’d also like to acknowledge my friend, the late Ron Patton, who first got me interested in the

study of bathymetry and the modeling of underwater environments. Those applications started

me down the road to the development of Delaunay triangulation software. And I’d like to thank

my co-worker Scott Martin, one the most talented software developers that I have ever met.

Scott provided many of the key insights that made Tinfour possible.

Finally, I’d like to thank my wife, Kat, who put up with my many late nights and early mornings

spent in the creation of this software. I could not have accomplished the implementation

without her support.

Preliminary Draft

iii

Table of Contents

1 Introduction .. 1

1.1 Delaunay Triangulations ... 1

1.2 Voronoi Diagrams ... 4

2 Building a Triangulated Irregular Network (TIN) ... 6

2.1 Performance and Memory .. 6

2.1.1 Time to Build Mesh as a Function of Sample Size ... 6

2.2 Algorithms and Structures for Building a Triangular Mesh... 8

2.2.1 Mesh Building through Incremental Insertion .. 8

2.2.2 The Delaunay Triangulation .. 9

2.2.3 Data Primitives and Structures for Representing Graphs ... 11

2.2.4 The Quad-Edge Data Structure ... 11

2.2.5 The Ghost Vertex and Bootstrap Layout ... 13

2.2.6 Edge Traversal and Navigating through the Mesh .. 16

2.2.7 The Realization of the Quad-Edge Structure in Code ... 17

2.2.8 Vertex Insertion Process ... 19

2.2.8.1 Simple Insertion with Edge Flipping .. 19

2.2.8.2 Improved Performance using the Bowyer-Watson Algorithm ... 20

2.2.8.3 Overview of Bowyer-Watson insertion ... 22

2.2.8.4 Vertex Location ... 22

2.2.8.5 Reducing Walk Lengths using a Sort Based on the Hilbert Curve 24

2.2.8.6 Vertex Uniqueness .. 25

2.2.8.7 Cavity Creation .. 26

2.2.8.8 Link Connection ... 26

2.2.9 Coordinates and Numerical Issues .. 27

2.2.9.1 Large-magnitude coordinates for vertices .. 27

2.2.9.2 Special Considerations for Geographic and Projected Coordinates 29

2.2.10 The Constrained Delaunay Triangulation .. 29

2.3 Interpolation ... 33

Preliminary Draft

iv

2.3.1 Techniques Implemented by Tinfour .. 33

2.3.1.1 Triangular Facets (TriangularFacetInterpolator.java) ... 33

2.3.1.2 Natural Neighbors (NaturalNeighborInterpolator.java) ... 33

2.3.1.3 Geographically Weighted Regression (GwrTinInterpolator.java) 33

2.3.2 Cross Validation .. 34

2.3.3 The Geographically Weighted Regression (GWR) Technique ... 35

2.3.3.1 Surface Models ... 35

2.3.3.2 Bandwidth Strategies for Sample Weighting .. 38

2.3.3.3 Interpreting the Results .. 39

2.3.3.4 Application Access to GWR Results .. 41

2.3.3.5 The State of the GWR Implementation .. 42

2.3.3.6 Background on the GWR Technique ... 43

3 Tests and Demonstrations .. 44

3.1 The Test Environment ... 44

3.1.1 Command-Line Arguments ... 44

3.2 Example Applications .. 47

3.2.1 Example Elevation and Hillshade Grid from Vertex Files .. 47

3.2.2 Point Thinning using the Hilbert Sort .. 50

3.2.3 Multiple Concurrent Processes for Surface Interpolation .. 50

3.3 Test Applications ... 50

3.3.1 The Single Build Test for Correctness of Implementation .. 50

3.3.2 The Repeated Build Test for Performance Evaluation .. 52

3.3.3 The Twin Build Test for Tuning Performance and Optimization ... 52

3.3.4 Time to Process TIN Due to Sample Size ... 54

3.4 The Tinfour Viewer.. 54

4 Lidar Data Samples .. 56

4.1 LAS and LAZ Format .. 56

4.2 Ground Points and Lidar Data Classification ... 56

4.3 Geographic Coordinates ... 57

5 References .. 58

Preliminary Draft

v

Table of Figures

Figure 1 – A non-optimal triangulation (left) and the Delaunay (right) .. 1

Figure 2 – A Delaunay triangulation created using unstructured sample points. .. 2

Figure 3 – A surface interpolated from unstructured data using a triangular mesh. 3

Figure 4 – Hillshade and elevation coded lidar sample at full resolution. .. 4

Figure 5 – A Voronoi diagram derived from unstructured samples. .. 4

Figure 6 – Measured build times for mesh construction .. 7

Figure 7 – Measured build times for mesh construction, object allocation excluded. 8

Figure 8 – Mesh building using incremental insertion .. 9

Figure 9 – Circumcircle criteria used for Delaunay triangulations .. 10

Figure 10 – The quad-edge data structure for edge AB/BA and neighbors .. 12

Figure 11 – Quad-edge links adjacent triangles ∆ABC and ∆DBA ... 13

Figure 12 – Initial geometry and links after completion of bootstrap operation. 15

Figure 13 – Traversal for adjacent edges .. 16

Figure 14 – Restoring the Delaunay property by flipping edges... 20

Figure 15 – Four phases of Bowyer-Watson insertion .. 21

Figure 16 – A "walk" across a triangular mesh ... 23

Figure 17 – Points Projected onto the Hilbert Space-filling Curve ... 25

Figure 18 – Ordinary and constrained Delaunay triangulations ... 30

Figure 19 – Optimality restored .. 31

Figure 20 – The ordinary Delaunay, the constrained, and the constrained with exterior removed. 31

Figure 21 – Image rendered using the constrained-region feature.. 32

Figure 22 – Hillshade image derived from the Bear Mountain lidar sample .. 49

Figure 23 – Tinfour Viewer image constructed from lidar data over Church Street and I-95 in Guilford, CT

(data source NOAA, 2011b). ... 54

Figure 24 – Wireframe rendering of lidar sample in coastal region (data source NOAA, 2011c) 55

Preliminary Draft

vi

Table of Tables

Table 1 – Links for quad-edge AB/BA and neighbors .. 12

Table 2 – Links depicted for triangles ∆ABC and ∆DBA .. 13

Table 3 – Links after completion of bootstrap operation ... 15

Table 4 – Psuedocode for edge traversal .. 16

Table 5 – Memory use for QuadEdge instance ... 18

Table 6 – Input and output options .. 44

Table 7 – Processing options ... 45

Table 8 – Random sample generation options ... 46

Table 9 -- Options for cross-validation application ... 47

Preliminary Draft

1

1 Introduction
Tinfour is a Java-based software library that provides tools for organizing and modeling unstructured

data using the Triangulated Irregular Network (TIN) structure.

Tinfour is intended to be a free, open-source project. Therefore, it seems appropriate to provide

background information to assist those who wish to use the code for their own applications. Nothing in

Tinfour can be properly described as novel. The techniques it uses follow directly from well-known

results from computational geometry. Its algorithms are not more complicated than those you would

encounter in a college-level programming course. Even so, some of the underlying ideas that form the

basis of the software may be obscured by the coding and implementation details. With that in mind, I

have written these notes to help clarify the logic and design choices that are embedded in its source

code. The algorithms Tinfour uses are taken from published works, most of them dating from the 1970’s

and 80’s. Citations are provided for the convenience of the reader. The theory of the Delaunay

triangulation was presented by Boris Delaunay in 1934. Many of the concepts used in Tinfour were

inspired by the work of Jonathan Shewchuk, particularly his excellent Triangle library (Shewchuk, 1996).

1.1 Delaunay Triangulations
The primary structure created by Tinfour is a triangular mesh that is optimal in the sense of the

Delaunay criterion. Because the Delaunay triangulation is a well-known topic in graph theory and widely

documented on the Internet, a brief discussion will suffice. For any reasonably large set of vertices,

there are many ways to connect them in a triangular mesh. But not all of them provide a favorable

representation of the spatial relationships between points. The Delaunay criterion provides a way of

selecting a mesh that is optimal in many regards. To illustrate this idea, Figure 1 shows an example of

what happens when a set of points is connected in an arbitrary manner versus one that observes the

Delaunay criterion.

Figure 1 – A non-optimal triangulation (left) and the Delaunay (right)

http://www.cs.cmu.edu/~quake/triangle.html

Preliminary Draft

2

The Delaunay triangulation is advantageous when modeling sets of unstructured sample points for a

number of reasons. First, the triangles it produces tend to be, on the whole, more nearly equiangular

than in other triangulations. By minimizing the frequency of “skinny” triangles, the Delaunay mesh

improves the numeric stability of the floating-point calculations that are commonly used for modeling

surfaces. Secondly, the Delaunay ensures that the substantial majority of points on the surface will be

contained in a triangle formed from the closest sample points in the set. Since the closest points are

generally the most relevant when performing interpolations, this property of the Delaunay leads to

more accurate interpolation results. Finally, the Delaunay triangulation provides an efficient tool for

identifying features and adjacency relationships within a set of sample points.

Figure 2 below shows an example of how data from a set of unstructured sample points can be

organized into a triangulated mesh. The data for this figure was taken from a lidar-based elevation

survey conducted in the area of Bear Mountain in Northwest Connecticut (NOAA, 2011a). Lidar systems

use laser distance measuring equipment aboard low-flying aircraft to obtain surface elevation data.

These systems provide a highly accurate and detailed view of the surface, typically collecting millions of

samples per square kilometer. The data in Figure 2 covers a 480 by 240 meter area. In the original lidar

data set, the area included over 133 thousand samples. For depiction purposes, the collection was

subsampled to 675 vertices. Color coding was added with blue tones being assigned to the lowest

elevations and red tones to the highest.

Figure 2 – A Delaunay triangulation created using unstructured sample points.

Preliminary Draft

3

Figure 3 shows a surface that was derived from the reduced set of sample points by using a technique

called Natural Neighbor Interpolation. The technique, which was described by Sibson (1981), takes

advantage of the properties of the Delaunay triangulation to produce a pleasingly smooth surface with

only moderate processing.

Figure 3 – A surface interpolated from unstructured data using a triangular mesh.

Finally, the image in Figure 4 shows effect of using the full resolution of the Bear Mountain lidar data set

that was used for the figures above. Tinfour was used to build a triangle mesh from the complete

sample set, providing an efficient method for computing the surface normal at each position in the

output image. A simple illumination model used the resulting surface normal to produce lightning and

shading effects. Color coding was assigned according to elevation using the same palette as in the above

two images. The enhanced level of detail in Figure 4 demonstrates the quality of the data in the original

lidar survey.

Preliminary Draft

4

Figure 4 – Hillshade and elevation coded lidar sample at full resolution.

1.2 Voronoi Diagrams
In addition to being an important result in Computational Geometry, the Delaunay triangulation is also

closely related to another prominent structure, the Voronoi diagram. The figure below shows a Voronoi

diagram that was constructed from the same sample points as used for the figures above. In the

diagram, the vertices from the triangular mesh are treated as "seed" points, each of which defines a sub

region of the plane. Each region contains the set of all points that are closer to their respective seed

point than any other sample in the data set.

Figure 5 – A Voronoi diagram derived from unstructured samples.

Preliminary Draft

5

Like the Delaunay triangulation, the Voronoi diagram is widely used to analyze data represented by

unstructured samples over a surface. For example, consider the case where a number of mold spores

are distributed at random in a culture dish. As the spores grow and reproduce, they form colonies that

expand outward at a uniform rate until they encounter other colonies. The boundaries between

colonies constitute a Voronoi diagram. Alternately, imagine a case where we wish to construct a map of

areas served by airports so that a pilot can determine the nearest airport in the event of an emergency.

Again, the boundaries of these areas would constitute a Voronoi diagram.

The Voronoi diagram is sometimes referred to as the "dual structure" of the Delaunay triangulation. In

other words, for each Voronoi diagram, there is a unique Delaunay triangulation, and vice versa. This

property makes it possible to construct one structure from the other with minimal processing (though

there are many algorithms that construct the structures directly).

Although the Voronoi diagram is not a focus of the Tinfour project, the library does include a class called

BoundedVoronoi that will produce Voronoi diagrams. Ordinarily, the Voronoi diagram is unbounded. Its

domain includes the entire plane. For software purposes, Tinfour provides an API for limiting the

Vorionoi structure it a specified (bounded) rectangular region.

Preliminary Draft

6

2 Building a Triangulated Irregular Network (TIN)

2.1 Performance and Memory

2.1.1 Time to Build Mesh as a Function of Sample Size
Currently, there are two versions of the Tinfour mesh-building implementation: the standard version

and the semi-virtual version. The standard version represents all edges as objects in memory. The semi-

virtual version maintains edges as a set of in-memory arrays of data primitives (integers, vertex

references, etc.), and creates objects only as needed on a short-term basis. The standard version is

simpler than the semi-virtual version. It also tends to process data faster than its counterpart.

Unfortunately, the standard version requires substantially more memory than the semi-virtual-edge

version: 246 bytes per sample in the standard version versus 120 for the semi-virtual version. So while it

is not a true virtual (out-of-core) implementation, the semi-virtual version avoids the considerable

memory overhead due to representing edges as persistent objects. Details of the two variations are

discussed below.

The plots in Figure 6 show timing values collected across several runs of Tinfour using a lidar data set

collected near Pole Creek in Oregon that contains just over 12 million samples including ground points

and other features (USGS, 2014). The data was processed using an application called

TimeDueToSampleSize that is one of the test applications included in the Tinfour software distribution.

To measure the effect of sample size on runtime, the data was randomly subsampled into smaller data

sets of various sizes and processed by the library. The statistics reflect only the time spent for data

processing. The time to read the input data files and select the sample input data was excluded from the

measurements. The trend lines and equations for the processing times were obtained using linear

regression.

 The results for this test were obtained using Oracle’s HotSpot Java Virtual Machine (JVM) running on a

Windows 7 host with 8 gigabytes of installed memory, a 2.9 GHz CPU with 512 kilobytes of L2 fast cache

memory and 4096 kilobytes of L3 memory. The Tinfour build process is a non-concurrent (single thread)

process, so the number of processors was largely irrelevant. No other major processes were running at

the time. So the results for this test depend on favorable conditions that do not apply in all cases, but

are not unrealistic when running Tinfour in a production environment with ample system resources. In

the case of the standard configuration, the library processed an average of 1.86 million samples per

second, though it exceeded that for smaller sample sizes. The slower, but less memory intensive semi-

virtual configuration averaged 1.34 million samples per second.

Preliminary Draft

7

Figure 6 – Measured build times for mesh construction

Like most contemporary software, the Tinfour library is based on an object-oriented approach. In the

standard implementation, the elements of the triangular mesh – vertices and edges – are all

represented by individual objects. Each sample in the source data requires, on average, 7 object

instances in the standard implementation: one object for each vertex and 6 objects to represent edges.

On the other hand, the semi-virtual implementation does not use explicit objects to represent edges,

and so requires an average of only 1.019 objects per sample: one for the vertex and a small amount of

overhead for internal bookkeeping. But even with the reduction due to the semi-virtual representation,

a set of 12 million samples would still require a very large number of objects.

In most Java applications, the overhead associated with the construction of an object is negligible.

However, conventional Java applications seldom create objects a million at a time. When processing

sample sets containing millions of points, the creation of objects (and the inevitable garbage collection

that accompanies it) is a significant contributor to the cost of processing. Figure 7 shows the result of

timing tests conducted using the same set up as described above, except that the cost of object

allocation was excluded. The equations in the figure do not show quadratic terms because they were of

very small magnitude and not statistically significant. Note that the performance change for the semi-

virtual configuration, which allocates fewer objects per sample, is much smaller than that of the

standard configuration.

Preliminary Draft

8

Figure 7 – Measured build times for mesh construction, object allocation excluded.

Tinfour does permit an application to reduce the cost of object allocation and garbage collection in cases

where multiple data sets are being processed individually. The main classes for the library –

IncrementalTin and SemiVirtualIncrementalTin – are essentially collections of vertices. When processing

multiple data sets, it is possible to reuse a single instance of these classes for each data set by clearing

its content between tasks. When the content is cleared, the internal objects that were constructed to

represent the edges in the TIN are not removed. Instead, they are simply marked as available for re-use.

Doing so avoids both the cost of allocating new objects and the overhead due to garbage collection.

2.2 Algorithms and Structures for Building a Triangular Mesh

2.2.1 Mesh Building through Incremental Insertion
The problem of constructing an optimal triangulated mesh is an important topic in computational

geometry and has been extensively studied. Su and Drysdale (1996) identified three broad classes of

algorithms for building triangulated mesh: divide-and-conquer methods, sweep-line methods, and

incremental insertion. The Tinfour library uses an incremental insertion algorithm. In this process, an

initial mesh of three vertices is created using a “bootstrap” process. Once the initial mesh is constructed,

vertices are added to the one-at-a-time. The process is illustrated in Figure 8 below. Vertices 3 and 4 are

inserted to the interior of the existing mesh. Vertex 5 extends the mesh. Note that each addition

changes the structure of the triangles and has the potential of destroying previously existing edges

(segments). For example, the insertion of vertex 4 has the effect of destroying edge 2-3 and replacing it

with new edges 3-4 and 2-4.

Preliminary Draft

9

Figure 8 – Mesh building using incremental insertion

In the course of building a TIN that includes a substantial number of vertices, edges may be constructed

and then replaced many times. Tinfour tracks the number of replacement operations as part of its

regular processing. In testing with lidar data from the Bear Mountain sample, the average number of

replacements ran about 6.5 (for a set of over 3 million edges). This statistic suggests that an efficient

way of handling edge replacements is a requirement for the design of a good TIN implementation.

Tinfour accomplishes this efficiency by using a reusable-object pool known as the EdgePool collection.

Slightly different versions of the EdgePool are used for the standard and semi-virtual implementations.

The figure above also illustrates a notable characteristic of a TIN. The perimeter of a TIN is always a

convex polygon.

2.2.2 The Delaunay Triangulation
As mentioned above, the fundamental product of the Tinfour implementation is a Delaunay

triangulation. The Delaunay criterion requires that the triangular mesh be constructed so that no point

lies within the circumcircle of a triangle to which it is not a member. On the left side of Figure 9 below,

point D does lie not within the circumcircle of triangle ∆ABC, so the Delaunay criterion is met by the pair

of triangles ∆ABC and ∆CBD . If point D were inside the circumcircle as shown on the right, the

triangulation would need to be reorganized by flipping the edge BC so that it connected edge AD to

form two alternate triangles ∆ABD and ∆DCA. Note that in both cases, the points are always given so

that they specify the edges of the triangle in counterclockwise order.

Each time a new vertex is inserted into the triangular mesh, Tinfour adjusts the local edges as necessary

to ensure that the criterion is observed. Thus at all stages of construction, the software maintains a

triangulation that is properly Delaunay.

Preliminary Draft

10

Figure 9 – Circumcircle criteria used for Delaunay triangulations

Cheng (2013, p. 57) provided a computation for determining whether a point D given by coordinates

(𝑑𝑥 , 𝑑𝑦) is inside the circumcircle of a triangle ∆ABC with coordinates (𝑎𝑥 , 𝑎𝑦) , (𝑏𝑥, 𝑏𝑦) , and (𝑐𝑥 , 𝑐𝑦)

by evaluating the following determinant :

InCircle(a,b,c,d) = ||

𝑎𝑥 − 𝑑𝑥 𝑎𝑦 − 𝑑𝑦 (𝑎𝑥 − 𝑑𝑥)
2 + (𝑎𝑦 − 𝑑𝑦)

2

𝑏𝑥 − 𝑑𝑥 𝑏𝑦 − 𝑑𝑦 (𝑏𝑥 − 𝑑𝑥)
2 + (𝑏𝑦 − 𝑑𝑦)

2

𝑐𝑥 − 𝑑𝑥 𝑐𝑦 − 𝑑𝑦 (𝑐𝑥 − 𝑑𝑥)
2 + (𝑐𝑦 − 𝑑𝑦)

2

||

If the value for InCircle(a,b,c,d) is greater than zero, D lies inside the circumcircle of ∆ABC and the

Delaunay criterion is violated. To restore the Delaunay property, we must perform an edge-swap

operation as described above. If the value is less than zero, then D is outside the circumcircle and the

criterion is met. If the value is exactly zero, the point is on the circumcircle and either arrangement of

points is acceptable based on the Delaunay criterion. In this ambiguous case, some other criterion must

be applied to select the preferred construction.

One question that arises from inspecting the drawings in Figure 9 is whether the fact that point D is

outside the circumcircle of ∆ABC tells us that we can be sure that point A is outside that of ∆CBD. A little

thought reveals that the computation for InCircle(c,b,d,a) is equivalent to swapping the rows in the

determinant for InCircle(a,b,c,d) an even number of times which, by the row property of determinants,

will produce the same value as the original order. Indeed, any permutation of rows that preserves the

counterclockwise ordering of triangle vertices always requires an even number of swaps. Thus the

evaluation of one determinant is all that is required to decide whether an edge flip operation is

necessary.

Preliminary Draft

11

2.2.3 Data Primitives and Structures for Representing Graphs
A triangulated mesh can be viewed as consisting of three geometric primitives:

1. Vertices

2. Edges

3. Triangles

Delaunay showed that, as the number of vertices in a Delaunay triangulation grows large, the number of

each kind of feature approaches the following values:

For N vertices:

 N×3 Edges

 N×2 Triangles

 An average of 6 edges connect to each Vertex

These relationships are maintained at all sufficiently large sub-regions of the overall TIN except near the
outer boundary.

For each sample in a data set, we construct one vertex. In data sets such as lidar surveys, where the
number of samples usually runs in the millions, the number of edges and vertices would be similarly
large.

2.2.4 The Quad-Edge Data Structure
The triangular mesh created by Tinfour is built from a collection of linked edges represented using the

quad-edge data structure which was popularized by Guibas and Stolfi in the mid 1980’s (Guibas, 1985, p.

74). It is suited to the construction of many different classes of polygon-based graphs including Delaunay

triangulations and Voronoi diagrams.

A single instance of a quad-edge structure is used to represent a single edge consisting of a pair of

vertices and links to 4 adjacent edges. As shown in Figure 10 below , the vertices A and B define a

segment AB and its “dual” BA. Edges in Tinfour are always treated as having direction, and every edge

has a dual in the opposite direction. The links for the edges depend on their direction. The forward link

from AB would be represented by a second quad-edge for vertices BR. The reverse edge from AB would

be quad-edge PA. Taken together, these quad-edges can be used to indicate the existence of a polygon.

In a TIN, all such polygons are triangles and all links are populated, though this restriction does not

necessarily apply to other kinds of graphs. Links for the edge are given in Table 1.

Preliminary Draft

12

Figure 10 – The quad-edge data structure for edge AB/BA and neighbors

Table 1 – Links for quad-edge AB/BA and neighbors

Edge Forward Reverse Dual

AB BR PA BA

BA AQ SB AB

PA AB Not shown AP

AP Not shown QA PA

 QA AP Not shown AQ

AQ Not shown BA QA

BR Not shown AB RB

RB BS Not shown BR

BS Not shown RB SB

SB BA Not shown BS

Two adjacent triangles would be represented as shown in Figure 11 below.

Preliminary Draft

13

Figure 11 – Quad-edge links adjacent triangles ∆ABC and ∆DBA

Table 2 – Links depicted for triangles ∆ABC and ∆DBA

Edge Forward Reverse Dual

AB BC CA BA

BC CA AB CB

CA AB BC AC

BA AD DB AB

AD DB BA DA

DB AB AD BD

The mesh representation in Tinfour does not specify triangles as an explicit object. Triangles are implied

by the links associated with the set of edges in the mesh collection. The data objects that represent

vertices do not carry any information that explicitly ties them to edge. The edges know about vertices,

the vertices do not know about edges. Thus, software that uses Tinfour can define vertices as immutable

objects or simply pass them to the library without fear that they will be altered.

2.2.5 The Ghost Vertex and Bootstrap Layout
Because both the previous examples were only fragments of a mesh, some of the links were not

recorded. One key factor in the construction of a triangular mesh using the quad-edge structure is the

stipulation that each link in the structure be populated. Doing so simplifies many coding problems, but

does require special logic to handle the edges that lie on the perimeter of the mesh.

Preliminary Draft

14

There are different strategies for avoiding or otherwise managing null links in different triangular mesh

implementations, Tinfour depends on a concept known as the “ghost vertex” (Cheng, 2013, p. 61).

Imagine a simple triangular mesh containing a single triangle with three perimeter edges. To populate

the null links for these edges, Tinfour specifies the existence of an imaginary point, the ghost vertex,

which connects to each vertex on the perimeter of the TIN. By doing so, it ensures that the forward and

reverse links for the perimeter edges are all populated. Some implementations give the ghost point an

actual geometric specification by imagining that it exists in a higher-order dimension from all the other

points in the mesh. For example, in a 2D triangular mesh for a set of coordinates organized over a plane,

the ghost point could be treated as existing in a third dimension, being raised some distance above the

plane. Tinfour does something a little different, implementing the ghost vertex as a null object

reference.

Figure 12 below illustrates the links for a mesh containing three points as it would be configured after

the initial bootstrap operation. In the figure, solid lines are actual edges, while the dotted lines indicate

connections and arrows indicate link direction. The mesh consists of three actual vertices – A, B, and C –

and a single ghost vertex. Even though the ghost vertex in the figure is shown in three positions, it is a

single entity and, so, is always labeled as g.

In addition to ensuring that no edges have null links, the bootstrap operation also establishes geometric

relationships that will be maintained in all subsequent point insertions. In particular, the forward links

for the interior edges of triangle ∆ABC establish a counterclockwise ordering for the triangle. Tinfour

maintains all triangles in the interior of the TIN in counterclockwise order. While the exterior links have

no true geometry (because the ghost point is null), an order is imposed on each loop based on the

direction of the perimeter edge it includes.

Preliminary Draft

15

Figure 12 – Initial geometry and links after completion of bootstrap operation.

Table 3 – Links after completion of bootstrap operation

Edge Start Vertex end Vertex Forward Reverse

e1 A B e2 e3

e2 B C e3 e1

e3 C A e1 e2

e4 A g d5 d1

e5 B g d6 d2

e6 C g d4 d3

d1 B A e4 d5

d2 C B e5 d6

d3 A C e6 d4

d4 g A d3 e6

d5 g B d1 e4

d6 g C d2 e5

Preliminary Draft

16

2.2.6 Edge Traversal and Navigating through the Mesh
Many operations in the Tinfour library involve some kind of traversal from one edge to a neighbor. For

example, given a starting edge it is possible to construct a triangle by moving across the forward links

until the traversal returns to the original edge. Figure 13 below shows the traversal from a starting

edge, e, to edges in its vicinity.

Figure 13 – Traversal for adjacent edges

Table 4 – Psuedocode for edge traversal

Edge Vertices Links

e AB Starting edge

d BA e.getDual()

f BC e.getForward()

r CA e.getReverse(), also e.getForward().getForward().

n BC e.getDualFromForward()

m AC e.getDualFromReverse()

Preliminary Draft

17

As mentioned above, Tinfour maintains links so that all triangles forming the mesh are oriented in a

counterclockwise order under forward traversal. So the result of three subsequent getForward()

operations results in a complete loop of a triangle.

As a last illustration of edge traversal, the following fragment of Java code shows an operation

nicknamed “the pinwheel” . The code collects a list of all the vertices that are joined to a central

“anchor” vertex by a set of connecting edges. At the start of the operation, we are given an edge that

begins with the anchor vertex A. The getA() method of that edge would obtain the anchor vertex. The

getB() method obtains the vertex at the other end of the edge. In the loop that follows, the

getDualFromReverse() method is used to traverse across the edges that connect to the anchor so that

the adjacent vertices can be extracted and added to the result list. The collection effort terminates when

the traversal makes a complete loop around the anchor vertex and reaches the initial edge.

IQuadEdge e; // given e starts with vertex A

ArrayList<Vertex> result = new ArrayList<>(); // a vertex collection

IQuadEdge cursor = e;

do{

 Vertex b = cursor.getB();

 result.add(b);

 cursor = cursor.getDualFromReverse();

}while(!cursor.equals(e));

During Tinfour development, we encountered so many mesh-processing applications that needed a

pinwheel-like operation, that we added a convenience function to simplify its use. Given a starting edge

e, we can accomplish the same result as shown above using the following code:

for(IQuadEdge cursor: e.pinwheel()){

 result.add(cursor.getB();

}

2.2.7 The Realization of the Quad-Edge Structure in Code
When we consider the practical problem of edge-traversal applications, we often find that code that

navigates a triangular mesh needs to be aware of the direction in which the edge is traversed. In graph

theory, a triangular mesh is an undirected graph. But for software purposes, it is useful to give individual

edges a sense of direction. So, if we wish to represent edges using Java objects, then information about

direction must be part of the Java class design. Tinfour addresses that requirement by implementing

each edge as a pair of linked objects, one for each direction of traversal. In effect, it splits the quad-edge

structure into two pieces. Each piece is an individual Java object. Each piece has a reference to its dual.

Both pieces are instantiated at the same time and tied together by setting their dual references to their

counterparts.

The main class for edge representation is named QuadEdge. Each instance of QuadEdge is accompanied

by a companion object from the class QuadEdgePartner, which is derived from QuadEdge. Thus, there

are two objects associated with each edge in the TIN. Because there are approximately 3 edge pairs

constructed for each vertex in a Delaunay triangulation, and the number of vertices in a data sample can

run in the millions, the number of object instances in a fully populated TIN can grow quite large.

Preliminary Draft

18

Therefore a compact class design is essential for conserving memory. For example, two vertices define a

line segment, so it follows that each edge would requires a reference to two vertex objects. But the

QuadEdge implementation only implements one. Since a QuadEdge object is always associated with a

QuadEdgePartner object, each object only needs to carry one reference. The second vertex reference

for either side of the pair can always be obtained from its counterpart.

Each instance of a QuadEdge object requires 32 bytes when running under the HotSpot virtual machine

with the compressed references option. QuadEdgePartner requires the same. Table 5 shows the layout

of the elements in the class. Because each edge requires a pair of objects, each edge requires 2×32=64

bytes of memory. Since there are 3 edge pairs per vertex, the total per-vertex memory use for the

QuadEdge representation is 3×64=196 bytes. Instances of the Vertex class itself require 40 bytes. So the

average memory use per data sample, including both edges and vertices, is 196+40=226 bytes.

Additional overhead due to the JVM memory management raises this value to the 246 bytes cited in

paragraph 2.1 Performance and Memory.

Table 5 – Memory use for QuadEdge instance

Element Size

Java management overhead 8 bytes

Reference to Java class definition 4 bytes

Reference to dual 4 bytes

Reference to vertex A 4 bytes

Reference to forward edge (link) 4 bytes

Reference to reverse edge (link) 4 bytes

Integer edge index (Tinfour bookkeeping) 4 bytes

Total 32 bytes

Some of the fields in the QuadEdge class are used to represent actual data, but 12 bytes of each

instance is due to the unavoidable cost of allocating objects in Java. That amounts to 24 bytes of

overhead per edge pair, or an average of 72 bytes per vertex. On top of that, the creation of so many

objects adds considerable processor overhead in terms of construction and garbage collection.

The SemiVirtualEdge implementation does not represent the edges in the triangular mesh as actual

objects, but stores metadata for the edges in conventional data primitives. When edge-related objects

are required, they are constructed as needed and quickly discarded. Since the edges do not exist as

persistent objects, the number of objects constructed by the semi-virtual implementation is reduced by

a factor of more than 1000. Thus the SemiVirtualEdge implementation reduces the total cost of all edges

to an average of 76.07 per vertex, using a total of approximately 120 bytes per sample including

memory for vertices and JVM overhead.

Because the SemiVirtualEdge implementation reduces memory use, it permits an application to process

substantially more vertices without increasing the maximum memory allocation of a JVM. Furthermore,

Preliminary Draft

19

by reducing the number of objects that are constructed, it substantially reduces the burden of garbage

collection. Unfortunately, the memory reduction has a cost of its own. The overhead required for

accessing Java arrays and interpreting the integer indices for forward and reverse links substantially

increases the run time. As demonstrated by the measured build times for the two variations shown

above in Figure 6 – Measured build times for mesh construction, the SemiVirtualEdge variation requires

40 percent more time than the standard QuadEdge implementation to process one million points.

2.2.8 Vertex Insertion Process
Tinfour inserts vertices into the mesh using an algorithm based on two famous papers by Bowyer (1981)

and Watson (1981). The thing that makes these papers famous is that both were submitted to the same

journal at about the same time and both presented important and closely related results. When the

editors of Computer Journal received the two papers, they elected to run them side-by-side in the same

issue.

By way of introduction, I will preface the discussion of the Bowyer-Watson algorithm with an earlier and

simpler technique that illustrates some of its underlying principles. The edge-flipping algorithm, which

was described by Lawson (1977), was actually the first algorithm implemented by Tinfour. It had the

appeal of being compact to code and easy to understand. However, when it was replaced with the

Bowyer-Watson method, the time required to build a TIN was reduced by a factor of 50 percent.

2.2.8.1 Simple Insertion with Edge Flipping
Lawson’s original algorithm creates a Delaunay mesh using a simple insertion procedure. Starting with

an initial mesh of three points (which Tinfour calls the “bootstrapped mesh”), the algorithm inserts each

vertex using the following steps:

1. Locate the containing triangle.

2. Insert the vertex into the triangle by linking it to each of the vertices in the existing triangle.

3. Recursively “flip” edges as necessary to restore the Delaunay property.

 The key to Lawson’s approach is the third step. When a vertex is inserted into the containing triangle,

any or all of the resulting triangles may be non-Delaunay. Without some kind of correction, the results

would gradually come to have the same sub-optimal appearance as the example of a non-Delaunay

mesh versus a Delaunay triangulation that was given in Figure 1 above. Lawson restored the Delaunay

property by testing each new edge to see if the triangles on its opposite sides met the Delaunay criteria.

If they did not, the edge was “flipped” resulting in an alternate set of triangles as shown in the figure

below.

Preliminary Draft

20

Figure 14 – Restoring the Delaunay property by flipping edges

Unfortunately, when a “non-Delaunay” edge is flipped, the job of restoring the Delaunay optimality is

not necessarily finished. When the insertion point lies within the circumcircle of the immediately

adjacent triangle, it may also lie within the circumcircles of one or more of the triangles adjacent to the

neighbor. So when the insertion logic detects a non-Delaunay triangle, it must recursively search the

"neighbor's neighbors" looking for additional edges that need to be flipped to restore Delaunay

optimality. Fortunately, when the search encounters a "Delaunay edge" (one that does not need to be

flipped), it does not need to continue beyond that point. Also, if the search encounters a perimeter

edge, there is no need to continue further. Thus the recursive search will always terminate

Even though it is guaranteed to terminate, the recursive search may radiate outward and affect several

layers of neighboring triangles. How many layers? In theory an insertion can affect the entire TIN.

When processing the Bear Mountain sample, the early implementation encountered a case where the

flipping operations radiated outward to 43 layers of surrounding triangles. In practice, the restoration of

the Delaunay property usually involves no more than two layers (or six edges). Even so, the overhead

related to testing and modifying edge links was sufficient to warrant an alternate approach.

2.2.8.2 Improved Performance using the Bowyer-Watson Algorithm
The insertion of a vertex using the Bowyer-Watson algorithm proceeds in 4 phases as illustrated in

Figure 15 below. Once the containing triangle is located, the process creates a cavity in the TIN by

removing non-Delaunay edges. It then connects the insertion vertex to the interior edges of the cavity,

restoring the triangle mesh. Bowyer and Watson’s papers show that the resulting mesh is Delaunay

optimal.

Preliminary Draft

21

Figure 15 – Four phases of Bowyer-Watson insertion

As a further refinement, Tinfour combines the Cavity Creation and Link Connection steps into a single

operation. Doing so improves the performance of the insert routine by reducing the number of times

edge links must be reassigned. It does, however, complicate the code. For clarity, these notes will

describe the insertion algorithm as separate steps. Readers interested in the details of the actual

implementation may review the source code for the addWithInsertOrAppend() method in the

IncrementalTin class.

Incidentally, the term “vertex insertion” is also used to describe the case where the vertex to be added

lies outside the TIN. Cheng (2013) provides details on how a “ghost triangle” (one that includes a

perimeter edge and the ghost vertex) can be processed with minor alterations to the overall logic

described below (p. 59).

Preliminary Draft

22

2.2.8.3 Overview of Bowyer-Watson insertion
Once the bootstrap operation is complete and an initial triangulated mesh is available, the Bowyer-

Watson algorithm inserts vertices into the mesh using the following steps:

1. Location: For each vertex to be inserted, identify the enclosing triangle. If the vertex is outside

the TIN, locate the ghost triangle such that the perimeter edge of the triangle is closest to the

insertion point.

2. Uniqueness: By definition, every vertex in a TIN must have unique horizontal coordinates. When

a vertex is added to Tinfour, it tests the insertion vertex against the three vertices of the

enclosing triangle to determine if is distinct. If an insertion vertex is not unique, it is not added

to the TIN. Instead, it is combined with the pre-existing vertex in a “vertex group”. The structure

of the TIN is not changed.

3. Insertion: If an insertion vertex is unique, identify mesh vertices that must be connected to the

insertion vertex, removing edges as necessary to ensure that the mesh remains Delaunay

optimal (this step also includes extending the mesh when the added vertex lies outside the

perimeter of the TIN).

2.2.8.4 Vertex Location
The most direct method for Tinfour to locate the triangle that contains an insertion vertex is a

sequential search through all existing triangles until it found a match. Unfortunately, such a process is

slow, having a time complexity of 𝑂(𝑛2) depending on the number of vertices in the input set. A faster

approach using a “walk” algorithm was proposed by Lawson (1977). Figure 16 illustrates the concept of

a traversal between two triangles in a Delaunay triangulation. As long as an algorithm can identify a

reasonably direct path, the number of steps in the traversal is substantially less than the number of

vertices in the mesh. Because such a path is readily obtained from a Delaunay triangulation, the

insertion algorithm can use it to expedite the point location process. A comprehensive discussion of

walk algorithms was given by Soukal (2012).

Preliminary Draft

23

Figure 16 – A "walk" across a triangular mesh

Tinfour performs a vertex location operation using the following steps:

1. Recall that all triangles in the mesh are oriented in counterclockwise order. Therefore, if a vertex

is contained by a triangle, it will be lie within the half plane to the left side of each interior edge.

2. For the first insertion after bootstrapping, select a “starting edge” using one of the interior sides

of the initial triangle. For all subsequent searches, pick a starting edge from the most recently

constructed triangle.

3. Test to see if the insertion vertex lies on or to the left side of the starting edge. If it does,

proceed to step 4. If it does not, then it will lie to the left side of the dual of the starting edge, so

transfer to the dual of the starting edge.

4. Repeat the following steps until the containing triangle is located or the traversal transfers to

the exterior of the TIN:

a. Obtain the forward edge. If the vertex is to the right of the forward edge, transfer to its

dual and continue to step 5.

b. Obtain the reverse edge. If the vertex is to the right of the reverse edge, transfer to its

dual and continue to step 5.

c. If the vertex is to the left of both the forward and reverse edges, then it must be in the

interior (or on the edge) of the current triangle. The traversal terminates.

5. The search has transferred to the dual of an edge such that the vertex is to the left side of that

edge. If the edge is an interior edge, continue the search from step 4.

6. If the edge is an exterior edge, identify the edge that subtends the vertex by moving to the left

or right perimeter edges until the subtending edge is located. Terminate the search.

The steps above work properly for a unique, optimum Delaunay triangulation. Unfortunately, a non-

optimum mesh may include regions in which the walk algorithm falls into a cyclic path and never

Preliminary Draft

24

reaches a containing triangle. Lawson showed that an infinite loop may be avoided by randomly

alternating the order in which the forward or reverse edges are considered in steps 4.a and 4.b. Even if

the walk lands in a potentially cyclic sequence of triangle hops, it will eventually transfer out of the loop

if the traversal can switch the order in which the neighboring edges are considered. Because of the

randomization element in the walk algorithm, this approach is often called the “Stochastic Lawson’s

Walk”.

Between each operation, Tinfour keeps track of the so-called "starting edge" so that each subsequent

walk starts where the previous walk ended up. If two subsequent vertices within the overall sample set

are spaced closely together (compared to the distance between other vertices), the number of steps

required for the walk operation is reduced. On the other hand, if the set of samples were randomly

positioned, the walk operation would tend to jump back and forth across the sample domain so that the

overall length of the walk operations would be increased. So Tinfour's walk operations tend to be more

efficient when subsequent vertices tend to be closer together than non-subsequent vertices. Such data

sets, which have a "high degree of sequential spatial autocorrelation", can be processed more efficiently

than those that do not have this characteristic. Fortunately, that is just the case in a typical lidar data

set. Because the points in a lidar data set are collected using a scanning laser, and most lidar samples are

given in the order collected, vertices derived from lidar will usually feature a high degree of sequential

spatial autocorrelation. For the Bear Mountain data set, it took an average of 3.38 steps to locate a the

triangle containing a vertex by using Lawson’s walk algorithm (this value was obtained using the

SingleBuildTest described below).

2.2.8.5 Reducing Walk Lengths using a Sort Based on the Hilbert Curve
There is an obvious case where the assumption of sequential spatial autocorrelation does not apply:

random samples. When samples are given at random positions across the input domain, it is unlikely

that one sample will be positioned near its predecessor. For randomly positioned samples, the length of

the average walk tends to be proportional to the square root of the number of points in the mesh (e.g. it

is proportional to the length of the diagonal across the collection of points). The time-complexity of the

point location, integrated over a large number of vertex additions, would approach 𝑂(𝑛3 2⁄).

To reduce the number of steps required to insert a set of points with poor sequential spatial correlation,

the Tinfour library implements a class for sorting the samples using an ordering scheme based on the

Hilbert space-filling curve (Hilbert, 1891). Each point in the sample is projected onto the nearest

segment of the Hilbert curve and assigned a sorting key based on its distance along the curve as shown

in Figure 17 below. Because the Hilbert curve folds back on its self, points that are close together tend

to have similar distance values. Thus the sort ensures that closely positioned points will be near each

other in the resulting sequence of samples. This operation greatly improves the sequential spatial

autocorrelation of the sample set. Thus, the time complexity of the vertex location process is reduced

to that of the Java sort itself, which is typically better than 𝑂(𝑛 ∙ log 𝑛).

Preliminary Draft

25

Figure 17 – Points Projected onto the Hilbert Space-filling Curve

Although the Hilbert sort can be beneficial when processing samples with poor autocorrelation, it is not

appropriate for all data sets. For example, the Hilbert sort is seldom required for lidar samples because

they usually have a high degree of sequential spatial autocorrelation. In fact, the sort can increase the

overall processing time for lidar samples by adding an extra step which carries an upfront cost of its own

and offers only modest reduction in the vertex location time. For example, performing a Hilbert sort on

the Bear Mountain sample reduces the average traversal length from 3.38 to 3.12 steps. When that

sample was tested with the Hilbert sort option, the time spent constructing the TIN was reduced by 106

milliseconds compared to the unsorted input. Unfortunately, the sort itself cost 236 milliseconds. So

sorting the vertices before building the TIN led to a net increase of 130 milliseconds for the overall

processing time. Clearly, the Bear Mountain sample was not a good candidate for the Hilbert sort. But

in cases where an application has knowledge, a priori, that a sample has weak sequential spatial

correlation, it can provide improved efficiency for processing. The sort can also be useful in application

such as the Tinfour Viewer (described below) in which the same data set is processed multiple times (so

that the cost of a single sort is amortized over many subsequent operations).

The logic for computing the Hilbert “rank” is based on the Lam & Shapiro method as described in

Warren (2013, p. 358).

2.2.8.6 Vertex Uniqueness
Tinfour tests each insertion vertex to ensure that it is unique based on a minimum distance criterion. If

the horizontal coordinates of a vertex is identical, or nearly identical, to those of an existing vertex, it is

not inserted into the mesh. Instead, Tinfour creates a “vertex group” treating the non-distinct vertices as

a single entity.

The VertexMergerGroup class extends Vertex by adding a list of vertices as one of its member elements.

The first time Tinfour encounters a case where the insertion vertex is non-unique, it replaces the pre-

existing vertex object with an instance of VertexMergerGroup constructed with its horizontal

Preliminary Draft

26

coordinates. Both the insertion vertex and the pre-existing vertex are added to the group. When an

application requires a vertical (z) coordinate for a vertex group, Tinfour extracts either the minimum,

maximum, or mean value of the vertices depending on which access options have been set for the TIN.

If an application uses the incremental TIN class’s accessor methods to request a list of all vertices

currently in the mesh, the resulting vertex collection (a Java List) contains the vertex group as an

element. The insertion vertices that were bundled into the group are not included in the result, but can

be obtained by accessing the group object that contains them.

2.2.8.7 Cavity Creation
In the procedure that follows, we describe an edge as being "Delaunay" if and only if the insertion vertex

is outside the circumcircle of the triangle that lies to the opposite side of the edge. The algorithm

creates the cavity by removing all edges that are non-Delaunay. As the edges are removed, the forward

and reverse links of the adjacent edges are adjusted so that the cavity is bounded by a properly linked

set of edges.

The cavity creation proceeds as follows:

1. Arbitrarily choose one edge of the enclosing triangle to be the "starting edge".

2. Designate the initial vertex of the starting edge as the "starting vertex".

3. Define an element as the "cursor" edge and set it to the starting edge.

4. If the cursor edge is Delaunay with respect to the insertion vertex, it will not be removed. If the

opposite vertex is the ghost vertex, the edge will not be removed and the edge will be treated as

"effectively" Delaunay. Use the InCircle calculation to determine if the cursor edge is Delaunay.

If the InCircle calculation is ambiguous, treat the edge as being Delaunay. Is the edge Delaunay?

a. Yes: Do not remove the edge. Transfer the cursor to its own forward edge.

b. No: Remove the edge from the mesh, adjusting the links of the adjacent edges to

maintain the cavity polygon links. Transfer the cursor to its dual's forward edge.

5. If the initial vertex of the cursor edge is the starting vertex, the cavity creation procedure is

complete. Otherwise, repeat from step 4.

It is possible that all edges of the enclosing triangle will be properly Delaunay and that the "cavity"

polygon will simply be the original enclosing triangle.

2.2.8.8 Link Connection
The resulting polygon may be convex or non-convex, but the work of Bowyer and Watson shows that it

will be ordered strictly in counterclockwise order. Furthermore, all edges constructed between the

insertion vertex and the polygon vertices will be Delaunay optimal. The link connection procedure is

straightforward and the resulting triangles will be specified in counterclockwise order. Furthermore, as

long as all the InCircle calculations were unambiguous, the resulting mesh will be Delaunay optimum

and unique. Otherwise, it will be "nearly Delaunay" and non-unique. Although Tinfour could implement

additional rules for "disambiguating" situations where the InCircle calculation gives an ambiguous (zero)

result, none are in place at this time. Thus, it is possible that the same set of sample points may give rise

to different TINs depending on the order in which they are added to the mesh.

Preliminary Draft

27

2.2.9 Coordinates and Numerical Issues
Computational geometry applications are notorious for issues with numerical precision. Computations

based on expressions with exact algebraic solutions often fail due to round off or approximation errors

due to the limits of floating-point arithmetic. Specific issues are discussed as they arise in the discussion

that follows, but two general considerations are worth noting:

1. Nearly identical vertices: The triangulation algorithms used in Tinfour depend on each vertex in

the mesh being unique. If vertices are too close, numeric computations that combine their

values could cause errors in the construction of the TIN. In order to avoid issues with two

vertices being spaced so closely together that computations fail, Tinfour must define a threshold

distance for treating “nearly identical” vertices as the same point.

2. Situations requiring extended precision arithmetic: In some cases, Tinfour will use extended

precision arithmetic to determine geometric relationships between features (for example, on

which side of a line a vertex lays). Because extended arithmetic requires more processing than

standard floating point calculations, Tinfour implements threshold values so that when some

standard calculations produce a value “close to zero”, the alternate extended precision value

calculations can be employed.

The assignment of threshold values depends on the magnitude of the data being modeled. Coordinate

values for an application for modeling the distribution of nutrients in a call culture would be of a much

different scale than those for one based on weather observations taken hundreds of kilometers apart.

When computing threshold values, the constructors for the Incremental TIN classes allow an application

to specify a value related to the average spacing of the vertices to be built into the TIN. The default

constructor assumes a value of 1 unit (meters, feet, parsecs, etc.). Other constructors allow an

application to specify values as appropriate.

The threshold for considering two vertices identical is 1/10000th of the average point spacing.

Applications may vary this by using the Thresholds class defined in the Tinfour project.

2.2.9.1 Large-magnitude coordinates for vertices
Although Tinfour is by no means limited geographic applications, geophysical modeling is a major use of

Triangulated Irregular Networks and requires that software be able to manage large-magnitude

coordinates. The Earth is a big place. Our planet is 40081299 meters around its equator. But geographic

applications often deal with situations in which one meter is a significant distance. So, in some cases,

resolving a coordinate to the nearest meter requires at least eight digits of precision. Doing so requires

the use of Java's 8-byte double floating-point data type which provides about 16 decimal digits of

precision. The 4-byte float type, which provides only 7 digits, is usually sufficient for vertical coordinates

(elevations), but is inadequate for horizontal coordinates (x/y, latitude/longitude, etc.).

For example, one of the datasets used to test Tinfour was a lidar survey conducted near Pole Creek in

Oregon. The area contained about 5 million ground points with an average spacing of about 0.5 meters.

Horizontal coordinates were given in a projected coordinate system (x/y values in meters rather than

Preliminary Draft

28

latitude/longitude). Coordinates from the first six points are given below. Although the horizontal

coordinate values are quite large, the differences between subsequent values are small.

X Y Z
605075.31 4891924.60 1610.51
605074.19 4891924.54 1610.56
605072.07 4891924.84 1610.90
605071.97 4891925.62 1611.99
605067.98 4891925.29 1611.64
605055.42 4891925.26 1611.71

The x and y coordinates listed above require 8 and 9 digits of precision respectively, and all within the

range supported by an 8-byte floating point value. But consider what happens when they are used in

arithmetic that depends on the product of these coordinates such as that used in the well-known

formula for the area of a polygon. Given a set of points (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) that describe a

polygon, with subscript n+1 corresponding to point 1, the area A of the polygon is:

𝐴 =
1

2
 ∑𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖

𝑛

𝑖=1

The 17 digits of precision required for the product of the x and y can exceed the precision of an ordinary

8 byte floating point value, so that the lower-order digits wash out of the expression. But because the

points in a lidar sample are close together, the low-order digits are just the ones that interest us. In

taking the product and difference of these terms, the information they carry will be lost.

Some TIN implementations attempt to address this problem by normalizing all input coordinates (scaling

them to the range 0 to 1 while building the TIN). Because one of the goals for Tinfour was to maintain

data elements in their original form, it does not modify input coordinates. Instead, it avoids numeric

issues by using alternate algebraic forms of numerically vulnerable expressions. For example, the area

of a polygon does not change when it is moved rigidly to another position. So if we reduce the

magnitude of the coordinates in the expression above by subtracting a fixed offset, we can avoid

numeric issues without affecting the resulting area value. The following expression shows one way of

translating the polygon coordinates to a position close to the origin.

𝐴 =
1

2
 ∑(𝑥𝑖 − 𝑥1)(𝑦𝑖+1 − 𝑦1) − (𝑥𝑖+1 − 𝑥1)(𝑦𝑖 − 𝑦1)

𝑛−1

𝑖=2

Although the area example is rather contrived, the, the InCircle function described above is a good

example of where an alternate algebraic form is used to avoid loss of significant digits. Different authors

Preliminary Draft

29

have used different forms of the InCircle determinant, but the form given by Cheng avoids precision

issues.

 For more detail, see the Wikipedia article on Loss of significance.

2.2.9.2 Special Considerations for Geographic and Projected Coordinates
Data collected for geophysical data samples present a special issue when using a TIN for processing:

geographic coordinates are not isotropic. Coordinates given in the X (longitude) and Y (latitude)

directions do not have a consistent unit of measure. This phenomenon is easily visualized by picturing

the way meridians (lines of longitude) converge at the poles. The distance between parallels (lines of

latitude) is uniform everywhere on the globe, but the distance between meridians decreases at latitudes

away from the equator.

Users with experience in Geographic Information Systems (GIS) are used to the issue of converting data

from geographic coordinates to some local projected coordinate system (map-based coordinate system)

so that features can be processed using a 2D Cartesian coordinate system with a consistent unit of

measure in all directions. Many geographic calculations depend on this quality, including the InCircle

and surface gradient calculations performed by Tinfour.

Because geographic coordinate are not isotropic, most lidar products are initially produced in a

projected coordinate system. However, some of the best sources for data on the Internet present

samples in geographic coordinates. For example, all data available at the NOAA Digital Coast site (NOAA,

2015) is converted to geographic coordinates before being posted. In 2011, the U.S. Department of

Agriculture collected a sample of lidar data over a Litchfield County in Northwest Connecticut (NOAA,

2011a). The sample consisted of 1742 one-kilometer squares. The coordinates for the original data were

given in the Universal Transverse Mercator (UTM) projection, zone 18N. However, before NOAA posted

the data to their FTP site, they converted it to a geographic coordinate system. In the region covered by

the survey, one degree of latitude represents a distance of about 35.4 kilometers, but one degree of

longitude represents a distance of about 26.4 kilometers. So the representation of the data for that

area is distinctly non-isotropic.

If at all possible, when processing data specified in geographic coordinates, it is useful to transform it to

a projected coordinate system. If that is not possible, at least be sure to specify a reasonable value for

the average point spacing when initializing the Tinfour incremental TIN classes. In the case of the

Connecticut data above, the average point spacing is about 1 meter. So, in geographic coordinates, the

average separation between data points would be about one 35.4 thousandth of a degree (if aligned

vertically).

2.2.10 The Constrained Delaunay Triangulation
The Delaunay techniques described above are based on the assumption that the triangulation process is

free to associate neighboring vertices based on the Delaunay criterion. In some cases, however, doing so

is not necessarily the best treatment of the data. Turning again to the example of elevation data,

consider the case when the terrestrial surface of interest include a cliff, road cut, escarpment, or even a

https://en.wikipedia.org/wiki/Loss_of_significance

Preliminary Draft

30

body of water. Connecting vertices on opposite sides of such a boundary may not necessarily be the

best treatment of the data.

The Constrained Delaunay Triangulation allows the insertion a collection of edges into the triangular

mesh that supersede the Delaunay criterion and constrain the way vertices are connected in the mesh.

The figure below illustrates the concept. The data shown occurs in two separate regions. The ordinary

Delaunay creates connections between the separate vertices at will. The constrained Delaunay adds

more information to the system in the form of edges that define the limits of the data regions. In the

figure, the constraint is shown as the vertical edge at the center of the triangulation.

Figure 18 – Ordinary and constrained Delaunay triangulations

One of the drawbacks of adding constraints to the triangulation is that not all the triangles in the mesh

will necessarily conform to the Delaunay criterion. In particular, the constraint may give rise to "skinny"

triangles such as those that appear near the constrained edge in the figure. Such artifacts are often

undesirable when using the triangulation to interpolate values or model a surface. Also, many

applications take advantage of the fact that the Delaunay Triangulation is easily mapped to another

important graphical structure, the Voronoi Diagram. If the addition of constraints renders the

triangulation non-Delaunay, it no longer has an associated Voronoi Diagram.

One way to restore Delaunay optimality was described by Rognant, et al. (1999), who also offered a

brief mathematical proof of the technique. The technique adds synthetic points along the constraint

edges as illustrated in the figure below. The constraint edges are subdivided into smaller edges and the

resulting triangles all conform to the Delaunay criterion. Optimality is restored.

Preliminary Draft

31

Figure 19 – Optimality restored

The applications of the CDT extend beyond terrain modeling into many areas of data modeling. An

example of the CDT that has nothing to do with surface elevation is provided by the LogoCDT application

which is included in the Tinfour software distribution. An image from the application is shown below.

Figure 20 – The ordinary Delaunay, the constrained, and the constrained with exterior removed.

Preliminary Draft

32

Tinfour implements a concept called the “constrained region” that permits polygon-based constraints to

define regions with application-defined metadata. This metadata is usually specified in the form of Java

objects added to the constraint when it is constructed. For example, the picture below was composed

using a global-scale product from the public-domain Natural Earth map project. Each of the country

polygons was populated with a Java Color object. A test application was written to render the interior

edges of from the resulting TIN using the colors registered with the associated polygons.

Figure 21 – Image rendered using the constrained-region feature

http://www.naturalearthdata.com/

Preliminary Draft

33

2.3 Interpolation
Interpolation is probably the most common application of a triangular mesh. Tinfour implements three

different interpolation techniques: Triangular Facets, Natural Neighbors, and Geographically Weighted

Regression Polynomials. Because all three techniques are implemented so that they access the TIN on a

read-only basis, it is possible operate multiple instances of any of the Tinfour interpolation classes in

parallel using a multi-threaded approach.

2.3.1 Techniques Implemented by Tinfour
 The interpolation methods implemented by Tinfour are described below.

2.3.1.1 Triangular Facets (TriangularFacetInterpolator.java)
The triangular facets technique determines a value for the interpolation point (x,y) by using the three

vertices of the triangle that contains the point to derive a the equation for a plane z=f(x,y) and then

solving for the z value at the specified coordinates. If the point lies outside the bounds of the TIN, it is

projected onto its subtending boundary edge and assigned a value using a two-point interpolation.

While this method is fast and robust, it is not suitable for most applications because the first-derivative

of the resulting surface is not continuous across the edges of adjacent triangles.

2.3.1.2 Natural Neighbors (NaturalNeighborInterpolator.java)
Sibson’s Natural Neighbor interpolation technique uses a weighted sum of vertices in the neighborhood

of (x,y) to compute a z value. The technique is fast, accurate, and provides first-derivative continuity

across the TIN except at its vertices (Sibson proposed an additional method that provided first-derivative

continuity everywhere, but it is not yet implemented in Tinfour). The Natural Neighbor interpolation

provides good results and is an excellent choice for many applications. However, it is not defined on the

edges or the exterior of the TIN. Also the Tinfour logic for computing surface normal tends to be non-

responsive to local changes in slope, so that visual results will appear to have filtered away finer details.

Unlike many Natural Neighbor implementations, the Tinfour algorithm does not alter the TIN when it is

used to perform an interpolation. In effect, it accesses the TIN on a read-only basis. Thus it is possible to

use the interpolator in concurrent, multi-threaded applications that perform analysis or other

operations over the TIN.

2.3.1.3 Geographically Weighted Regression (GwrTinInterpolator.java)
One of the fundamental ideas of geographic information analysis is the idea that data collected near a

point of interest is more relevant than that from farther away. So if we were to interpolate a point on a

surface by using a regression technique, it seems a natural to assign a greater weight to those sample

points nearby than to those further away. That, in effect, is what the Geographically Weighted

Regression (GWR) technique attempts to do.

The GwrTinInterpolator class selects a limited set of input samples in the vicinity of (x,y) and applies a

weighting factor to each sample based on the inverse of their distance from the interpolation point.

Preliminary Draft

34

Although the regression technique is the most processor-intensive of the methods supported by Tinfour,

it is the only technique which provides a statistics describing the quality of the interpolated result

including both the standard deviation and prediction interval for its interpolated value. Also, because

the result of this interpolation is a polynomial (of degree 1, 2, or 3), it can be used to find derivatives and

second derivatives for the surface in the neighborhood of (x,y). This feature makes the regression

technique useful in applications requiring surface normal, slope, or curvature values. The GWR is the

interpolation of choice for Tinfour's example hillshade implementation.

The GWR technique also has the feature that it is not intrinsically tied to the triangulated mesh as the

other techniques. It requires only a collection of samples in the vicinity of the interpolation coordinates.

So in addition to the TIN-based implementation GwrTinInterpolator, Tinfour also includes a class called

GwrInterpolator which accepts an array of sample points for interpolation purposes. Your application

can collect these sample points using whatever means is appropriate, and then use GwrInterpolator to

perform its interpolation. No TIN would be required. The Tinfour library also exposes an internal class,

SurfaceGWR, which performs most of the internal operations related to GWR modeling.

More detail on the GWR technique is given below.

2.3.2 Cross Validation
One of the precepts of geospatial analysis is the idea that features near to each other tend to have

similar properties. We expect that two elevation samples taken close together will be more likely to

have similar values than samples taken far apart. In geographic information analysis, this idea is often

referred to as spatial autocorrelation.

With this precept in mind, the question arises as to how well the value of a particular sample point can

be predicted by its neighbors. The cross validation process explores that question using the following

process:

1. Construct a TIN from a set S of sample points.

2. One at a time, temporarily remove a sample point si = (xi, yi, zi) from the TIN and then use the

TIN to interpolate a value for z at (xi, yi).

3. Compute the error ei = |z-zi|.

4. Restore sample point si back to the TIN and continue to process the rest of the samples in the

TIN.

The mean value and variance of the error terms provides a metric for evaluating both the degree of

spatial autocorrelation of the sample set and the relative success of a particular interpolation strategy.

The following output was obtained using one of the example applications included in the Tinfour source

distribution, ExampleCrossValidation, to process part of the Bear Mountain sample.

Tested 663592 of 1036879 vertices

Method mean |err| std dev |err| range of err

Triangular Facet 0.049917 0.047752 -2.524 2.473

Natural Neighbor 0.048697 0.046385 -2.516 2.381

GWR, Fixed Bandwith 0.86 0.048607 0.046385 -2.395 3.586

GWR, Proportionate 0.45 0.048021 0.045532 -2.447 2.318

Preliminary Draft

35

The text shows results from all three interpolation classes with two variations of the Geographically

Weighted Regression method which are discussed below. In general, all produce values close to 5

centimeters (about 1.96 inches). Examining the source data shows, not surprisingly, that the most

severe errors occur in areas with very steep or discontinuous surfaces such as cliffs or escarpments.

2.3.3 The Geographically Weighted Regression (GWR) Technique
The Geographically Weighted Regression technique was introduced in paragraph 2.3.1.3 above.

Geographically Weighted Regression (GWR) is a statistics technique that is used in situations where the

nature of the data may vary over a geographic area, a characteristic which is referred to as “non-

stationarity”. In GWR, a weighting factor is applied to each sample based on its distance from a point of

interest. Thus, the more distant a sample, the less information it contributes to the regression estimate.

While GWR is a very general technique, the Tinfour implementation focuses on the special case where

the data is a real-valued surface (a “field”) with isotropic coordinates. This treatment is well suited to

terrain analysis and related problems. More general implementations are available on the web through

the GWR4 application1 and through modules for the R statistics application. More information about the

technique is available on the web from Wheeler and Páez (2010).

Tinfour’s GwrTinInterpolator class provides optional interpolation arguments that are not used by the

other interpolators: surface model and bandwidth selection. The surface model option allows an

application to specify the degree of the polynomial that the interpolator uses to model the surface. An

application may specify a planar model, a quadratic model, or a cubic model. The bandwidth selection

option permits an application to specify different strategies for assigning weights to the samples.

2.3.3.1 Surface Models
The polynomials that are derived in response to the surface model selection are given in the following

forms which correspond directly to the states in the Java enumeration SurfaceModel which is part of the

Tinfour analysis module. The interpolating coefficients 𝛽0, 𝛽1, … , 𝛽𝑛 are derived from the input samples

using the regression operation.

planar

�̂�1 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦

planar with
cross terms

�̂�2 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑥𝑦

quadratic

�̂�3 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑥
2 + 𝛽4𝑦

2

quadratic with
cross terms

�̂�4 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑥
2 + 𝛽4𝑦

2 + 𝛽5𝑥𝑦

1
 Unfortunately, at the time of this writing I was unable to find a copy of GWR4 on the web except at a site that

wanted to push out adware. Testing was conducted using an older version which is no longer available.

Preliminary Draft

36

cubic

�̂�5 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑥
2 + 𝛽4𝑦

2 + 𝛽5𝑥
3 + 𝛽6𝑦

3

cubic with
cross terms

�̂�6 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑥
2 + 𝛽4𝑦

2 + 𝛽5𝑥𝑦 + 𝛽6𝑥
2𝑦 + 𝛽7𝑥𝑦2 + 𝛽8𝑥

3 + 𝛽9𝑦
3

When an interpolation is computed for coordinates (x, y), the Tinfour methods uses the TIN to identify a

set of samples in the neighborhood of the interpolation coordinates, selecting a number of input

samples appropriate to the degree of the surface model. Next, weighting factors are assigned to each

sample based on their distance from the interpolation point. Finally, the horizontal coordinates of the

input samples are adjusted by the offset (-x, -y) before the regression is performed. With that

adjustment, the interpolation point is treated as the origin and the estimating function is evaluated for

coordinates (0, 0). Thus the value of the interpolation is just the resulting estimator 𝛽0 from the

interpolation. The main purpose of this approach is to reduce the impact of numerical issues and the

loss of precision when performing the linear regression. But it also has the side effect of greatly

simplifying the calculations at the interpolation coordinates, particularly when obtaining slope, surface

normal, or second derivatives.

 For all six models evaluated at coordinates (0,0), the following results apply.

𝑧𝐼𝑛𝑡𝑒𝑟𝑝 = 𝛽0

𝑧𝑥 =
𝜕𝑧

𝜕𝑥
(0, 0) = 𝛽1

𝑧𝑦 =
𝜕𝑧

𝜕𝑦
(0, 0) = 𝛽2

With the unit normal to the surface at the interpolation point being given by

 �⃗� =
(−𝑧𝑥,−𝑧𝑦,1)

√𝑧𝑥
2+𝑧𝑦

2+1
=

(−𝛽1,−𝛽2,1)

√𝛽1
2+𝛽2

2+1

The aspect of the surface at the slope at the interpolation point is defined as direction of steepest

ascent taken counterclockwise from the x axis. It is computed as 𝜃 = tan−1 (𝑧𝑦 𝑧𝑥)⁄ with the

appropriate adjustment of angle for quadrant based on the signs of the two input arguments. Many

programming languages, including Java, include a function called atan2() which automatically makes this

adjustment when computing tangent. Using the simplifications due to treating the interpolation point as

the origin, the aspect is given by

 𝜃 = 𝑎𝑡𝑎𝑛2(𝛽2, 𝛽1)

Applications dealing with hydrography are often more interested in the direction of steepest descent

which, of course, gives the expected direction for the flow of surface water:

Preliminary Draft

37

 𝜃 = 𝑎𝑡𝑎𝑛2(−𝛽2, −𝛽1)

The slope at the interpolation point is derived from the magnitude of the gradient vector |∇𝑧| as

𝑠 = √𝑧𝑥
2 + 𝑧𝑦

2 = √𝛽1
2 + 𝛽2

2

Second derivatives are easily computed for the quadratic and cubic models:

𝑧𝑥𝑥 =
𝜕2𝑧

𝜕𝑥2
(0,0) = 2𝛽3

𝑧𝑥𝑥 =
𝜕2𝑧

𝜕𝑦2
(0,0) = 2𝛽4

And for the quadratic and cubic models with cross terms:

𝑧𝑥𝑦 =
𝜕2𝑧

𝜕𝑥𝜕𝑦
(0,0) = 𝛽5

Wilson and Gallant (2000, p. 53) give the following expression for profile curvature which is the rate of

change of slope measured along a unit vector pointing in the direction of descent.

𝐾𝑝 = −
𝑧𝑥𝑥𝑧𝑥

2 + 2𝑧𝑥𝑦𝑧𝑥𝑧𝑦 + 𝑧𝑦𝑦𝑧𝑦
2

(𝑧𝑥
2 + 𝑧𝑦

2)(𝑧𝑥
2 + 𝑧𝑦

2 + 1)
3 2⁄

The value for profile curvature, 𝐾𝑝, and the other curvatures described below is given in radians per unit

distance.

According to Peckham (2011, p 27), the extra factor (𝑧𝑥
2 + 𝑧𝑦

2 + 1)3 2⁄ in the denominator defines

curvature “based on differential movements along the 3D streamline curve (that lies on the surface)”

rather than on the horizontal plane. Wilson and Gallant also provide the following expression for

contour curvature (sometimes called plan curvature) which describes the curvature of a contour line at a

point of interest on the surface. Contour curvature essentially describes the rate at which a flow path on

the surface would be converging (negative) or diverging (positive):

𝐾𝑐 = −
𝑧𝑥𝑥𝑧𝑦

2 − 2𝑧𝑥𝑦𝑧𝑥𝑧𝑦 + 𝑧𝑦𝑦𝑧𝑥
2

(𝑧𝑥
2 + 𝑧𝑦

2)

By again adding the extra factor to the denominator, Peckham obtains tangential curvature which is

adjusted to match the curvature along the streamline curve rather than the horizontal plane.

𝐾𝑡 = −
𝑧𝑥𝑥𝑧𝑦

2 − 2𝑧𝑥𝑦𝑧𝑥𝑧𝑦 + 𝑧𝑦𝑦𝑧𝑥
2

(𝑧𝑥
2 + 𝑧𝑦

2)(𝑧𝑥
2 + 𝑧𝑦

2 + 1)
3 2⁄

Preliminary Draft

38

Peckham gives the streamline curvature which describes the rate of change in the direction of the flow

(as measured on the horizontal plane):

𝐾𝑠 = −
𝑧𝑥𝑧𝑦(𝑧𝑥𝑥 − 𝑧𝑦𝑦) + (𝑧𝑦

2 − 𝑧𝑥
2)𝑧𝑥𝑦

(𝑧𝑥
2 + 𝑧𝑦

2)
3 2⁄

Peckham gives a clear and concise derivation for all of the expressions given above and offers useful

insights on applying them to the modeling of surface flow and related phenomena.

Finally, it is worth noting that the expressions given above can be used for points other than the

interpolation point provided that the appropriate offset is added to the coordinates of interest. While

the simplifications described above cannot be used when computing 𝑧𝑥 , 𝑧𝑦 , etc., the algebra is

straightforward.

2.3.3.2 Bandwidth Strategies for Sample Weighting
The minimum number of samples required to perform a linear regression depends on the number of

coefficients in the target polynomial. Tinfour automatically selects a set of sample points from the

neighborhood of the interpolation coordinates based on the specified model. Thus when performing an

interpolation, the larger order polynomials have two characteristics: they will require more sample

points, and the average distance of the sample points from the interpolation coordinates will increase

resulting in an increase of the overall area from which the samples are collected. Since one of the ideas

of geospatial analysis is that the nearby points are more relevant than the more distant ones, some

method is required to account for the expanded data set characteristics.

In Geographically Weighted Regression, the relative contribution of neighboring sample points is

adjusted by an inverse-distance weighting function. Wheeler (2010, p. 463) and other authors have

identified several functions for distance weighting. Tinfour uses the Gaussian kernel

𝑊𝑖 = 𝑒
−
1
2
(
𝑑𝑖
𝛾

)
2

Where 𝑑𝑖 gives the distance for the ith sample from the interpolation coordinates and 𝑊𝑖 gives the

weighting factor to be used for that sample in the regression computation. The parameter 𝛾 in the

equation above is referred to as the “bandwidth” of the weighting function. It should be expressed in

the same unit of measurement as the distance. The idea of bandwidth is roughly analogous to the use

of the term in communications theory in that it controls how much information is accepted from distant

samples when performing a regression. If 𝛾 is large, it reduces the size of the distance term and

increases the overall weight of the sample. Thus with a larger bandwidth value, more distant samples

receive larger weights and contribute more to the overall interpolation. For a sufficiently large

bandwidth, the distance term would be effectively zero and the weight of all samples approach unity. In

that case, the GWR would be equivalent to an ordinary least squares estimation. If the bandwidth

parameter is small, the distance term becomes more significant and the contribution of more remote

samples is decreased.

Preliminary Draft

39

Tinfour provides four methods for bandwidth selection as described below:

1. Fixed bandwidth supplied by the application.

2. Proportional bandwidth selected as a multiple of average distance of the locally selected

samples from the interpolation coordinates based on a parameter supplied by the application.

3. Automaticallly selected bandwidth in which an optimal bandwidth is selected based on the

Akaike Information Criterion with correction for small sample sizes (AICc method).

4. Ordinary Least Squares (uniform weighting of all samples).

The fixed bandwidth method is preferred in cases where an application has information or requirements

specific to the data and needs to enforce a particular criterion. It has the disadvantage that an

application must implement its own logic for establishing the bandwidth parameter. There are no fixed

rules for deriving this parameter. For the Bear Mountain sample shown in the discussion on cross

validation above, the ExampleCrossValidation application simply used the average point spacing for the

overall sample set.

The proportional bandwidth is preferred in cases where an application has no a priori information about

the data set and wishes to apply a bandwidth that is proportionate to the average distance of the locally

selected samples from the interpolation coordinates. This method has the advantage of adjusting the

bandwidth to meet local density of the samples.

Both the fixed and proportional bandwidth methods have the disadvantage of being arbitrary settings

that are not driven by a statistical model of the data. In contrast, the automatic bandwidth method is

based on recognized statistical techniques for model selection (bandwidth being considered an element

of the model). The AICc criterion provides a way of judging the relative performance of different

combinations of surface model and bandwidth value for a particular set of samples. In conventional

regression applications, the criterion is often used to determine which combination or subset of

interpolation variables lead to the best quality estimator for a response surface. In the automatic

selection process, Tinfour use the criteria to select a surface model selection and bandwidth

combination that produce a good representation of the surface in the vicinity of an interpolation point.

Unfortunately, the calculation of the AICs score is computationally expensive. It requires far more

processing than the regression itself. Consequently, the overall process of automatic model and

bandwidth selection is quite slow. Processing rates of 100 to 200 interpolations per second are typical.

The problem is exacerbated by the fact that the treatment of AICc score as a function of bandwidth over

a given set of samples often yields a highly complicated curve with many local extrema and inflection

points. Thus simple numerical techniques like Newton’s method cannot be used to find optimal values.

Instead, processor-intensive search techniques must be employed.

2.3.3.3 Interpreting the Results
The results below were performed by the cross-validation application with the automatic model and

bandwidth options enabled. Because the automatic method is so slow, only a subarea of the lidar

sample was processed. For this area, the overall error tallies are somewhat larger than they were in the

Preliminary Draft

40

example above. The details below also provide the mean and standard deviation of the bandwidth

values that were selected as well as counts of how many times particular surface models were chosen.

Tested 9453 of 1036879 vertices (153.10/sec)

Method mean |err| std dev |err| range of err sum err

Triangular Facet 0.052792 0.047142 -0.334 0.533 2.242

Natural Neighbor 0.051293 0.045680 -0.342 0.414 -3.003

GWR, Fixed Bandwith 0.86 0.051572 0.045812 -0.340 0.403 0.748

GWR, Proportionate 0.45 0.051091 0.045509 -0.336 0.405 -0.345

GWR, Automatic BW AICc 0.052512 0.047208 -0.346 0.377 -1.037

Values for automatically selected bandwidth

 Mean: 0.728962 (0.400464 of mean dist)

 Std Dev 0.133318 (0.071733)

 Min,Max: 0.370358, 1.217216 (0.300, 0.650 of mean dist)

Number of Ordinary Least Squares: 0

Planar 10

PlanarWithCrossTerms 81

Quadratic 1490

QuadraticWithCrossTerms 814

Cubic 1360

CubicWithCrossTerms 5698

Considering how much processing the automatic bandwidth selection method requires, the fact that it

yields the largest mean absolute error of all the regression methods is disappointing. One could

reasonably ask whether the implementation is correct. While that remains an open question (see The

State of the GWR Implementation below), there is an alternate explanation. One of the reasons that the

error is somewhat higher for the GWR is that the AICc criterion is designed to select the configuration

that produces the best overall interpolating polynomial for the results. The elevation at the interpolation

point is based on the use of just one coefficient from the result: 𝛽0. The AICc process attempts to find an

optimal set of interpolating coefficients: 𝛽0, 𝛽1, … , 𝛽𝑛. Thus a bandwidth and model selection that

yields a strong 𝛽0, but weak higher-order coefficients, would have a correspondingly poor AICc score

and would not be preferred to a selection that produces good coefficients overall. So in cases where an

application was as interested in estimates of characteristics derived from surface derivatives – including

slope, curvature, and surface normal – the weaker cross validation results would be of less concern.

Also, it is worth noting that success of GWR in a cross-validation technique is a measure of how well the

values of a sample point can be predicted from that of its neighbors. That, in turn, is a direct reflection

of the kind of terrain in a prediction area. The Bear Mountain sample represents rough terrain with

numerous boulders, escarpments, and steep slopes. A more moderate terrain from a different tile in the

Connecticut survey area (20111218_18TXM2835.las, which is mostly farmland) produced quite different

results. These are shown in the table below. While the automatic bandwidth selection still features the

largest magnitude errors, that deviation is only 2.3 centimeters… a value less than the width of two

fingers. Results like that give one an appreciation of just how good Lidar technology has become.

Tested 12675 of 1193868 vertices (148.57/sec)

Method mean |err| std dev |err| range of err sum err

Triangular Facet 0.022933 0.025198 -0.281 0.265 -0.083

Natural Neighbor 0.022473 0.024584 -0.320 0.249 -2.920

GWR, Fixed Bandwith 0.80 0.022708 0.024311 -0.303 0.270 -1.236

GWR, Proportionate 0.45 0.022473 0.024254 -0.303 0.266 -0.208

GWR, Automatic BW AICc 0.023215 0.025326 -0.343 0.312 1.819

Preliminary Draft

41

2.3.3.4 Application Access to GWR Results
The following snippet of code shows how the results for an interpolation at coordinates (x,y) could be

obtained and output to a Java PrintStream (ps).

 // Perform the interpolation for coordinates (x,y) given a valid TIN

 // using a specified surface model and the Automatic Bandwidth selection

 GwrTinInterpolator gwr = new GwrTinInterpolator(tin);

 double z = gwr.interpolate(

 SurfaceModel.Cubic,

 BandwidthSelectionMethod.AutomaticBandwidth, 0,

 x, y, null);

 // Obtain the associated results for the most recent interpolation,

 double[] beta = gwr.getCoefficients();

 double []predictionInterval = gwr.getPredictionInterval(0.05);

 double zX = beta[1];

 double zY = beta[2];

 double zXX = 2*beta[3];

 double zYY = 2*beta[4];

 double zXY = beta[4];

 double azimuth = Math.atan2(zY, zX);

 double compass = Math.toDegrees(Math.atan2(zX, zY));

 if(compass<0){

 compass+=360;

 }

 double grade = Math.sqrt(zX*zX+zY*zY);

 double slope = Math.toDegrees(Math.atan(grade));

 double kP = (zXX*zX*zX+2*zXY*zX*zY + zYY*zY*zY) /

 ((zX*zX+zY*zY)*Math.pow(zX*zX+zY*zY+1.0, 1.5));

 ps.format("Estimated z: %12.5f\n", z);

 ps.format("Prediction interval (95%% confidence): %12.5f to %6.5f (%f)\n",

 predictionInterval[0], predictionInterval[1],

 predictionInterval[1]-predictionInterval[0]);

 ps.format("Zx: %12.5f\n", beta[1]);

 ps.format("Zy: %12.5f\n", beta[2]);

 ps.format("Azimuth steepest ascent %12.5f\n", azimuth);

 ps.format("Compass bearing steepest ascent %05.1f\u00b0\n", compass);

 ps.format("Grade %8.1f%%\n", grade*100);

 ps.format("Slope: %8.1f\u00b0\n", slope);

 ps.format("Profile curvature: %12.5f\n", kP);

The following text gives an example output from the code above at the coordinates (627520, 4655800)

from the Bear Mountain sample (ground points only):

Estimated z: 612.54953

Prediction interval (95% confidence): 612.37857 to 612.72049 (0.341922)

Zx: -0.01685

Zy: 0.03897

Azimuth steepest ascent 1.97891

Compass bearing steepest ascent 336.6°

Grade 4.2%

Slope: 2.4°

Profile curvature: 0.00833

Preliminary Draft

42

2.3.3.5 The State of the GWR Implementation
The GWR implementation is the area of the Tinfour project that could most benefit from expert

attention. Clearly the automatic bandwidth and model-selection option is too slow for bulk production

of interpolated values, as when producing an elevation or hill-shade grid. During development, the

results from the Tinfour application were compared to those of GWR4 to verify correctness of

implementation. When Tinfour is used with application-specified bandwidths, the results from the

interpolation and evaluation statistics (variance, confidence intervals, AICc scores) match.

 However, when using automatic bandwidth selection, the version of GWR4 that was used for testing

(4.0.80) failed to execute successfully and did not report any useful diagnostic information. So the

results of the automatic bandwidth testing method have not been compared to other applications.

Instead, testing was conducted through a self-test process as follows:

1. For selected sample point sets, a regression was performed using the “fixed bandwidth” option

for a large number of bandwidths within the range supported by Tinfour (from 0.3 to 1.0 times

the mean distance of the samples from the interpolation point). The AICc score was recorded for

each. The test with the best AICc score was considered the “optimal” bandwidth.

2. The optimal bandwidth obtained from the above test was compared to the bandwidth

estimated using the automatic selection method in the Tinfour implementation.

3. The test was considered successful if the bandwidth selections were within 5 percent of each

other (computed as the difference of the two bandwidths divided by the range of evaluation).

Since the Tinfour AICc calculation was verified using a separate software package (GWR4), the self-test

procedure has some merit. However, because the computation of AICc for GWR is so time-consuming,

only a few hundred samples were considered. Therefore these results should be viewed with caution.

Beyond the details of implementation, the basic assumption of GWR deserves attention. GWR addresses

the issue of heteroscedasticity in observed data by treating the significance of samples distant from a

point-of-interest as less than that of those nearby. While this assumption is reasonable as far as it goes,

it does not consider the degree to which samples correlate with each other. Consider the case where

two relatively distant elevation samples are spaced close to each other and so capture a feature (such as

a large boulder) with an increased elevation compared to the surrounding terrain. While the distance-

weighting logic will reduce the contribution of each sample, there are still two of them in the data set.

Simple GWR does not account for the fact that, taken together, those two samples over-represent a

heteroscedastic feature. As this example shows, addressing collinearity and self-correlation among

samples is an area that presents potential improvement to the Tinfour implementation.

Preliminary Draft

43

2.3.3.6 Background on the GWR Technique
General discussions of the GWR technique are readily available on the Internet (see Wheeler 2010, etc.).

The calculations used to derive regression coefficients are adapted from Walpole and Myers (1989, p.

401-442) Chapter 10, "Multiple Linear Regression". Walpole and Myers provide an excellent

introduction to the problem of multiple linear regression, its evaluation statistics (particularly the

prediction interval), and their use. The calculations for a weighted regression are not covered in their

work, but were derived from the information they provided. Because these calculations are not taken

from published literature, they have not been vetted by expert statisticians.

Details of the evaluation statistics specific to a weighted regression are taken from Leung, et al. (2000, p.

9-32). The authors were particularly interested in presenting mathematically sound formulations for

unbiased statistics and reliable ways of detecting “nonstationarity” (heteroskedasticity) in a sample set.

Information related to the AICc criteria as applied to a GWR was found in Charlton, Martin and

Fotheringham, A (2009), a white paper downloaded from the web. A number of other papers by

Brunsdon, Fotheringham and Charlton which provide slightly different perspectives on the same

material can be found on the web.

Preliminary Draft

44

3 Tests and Demonstrations
The Tinfour software distribution includes a Java package (folder) named “demo” which contains high-

level test programs and example applications that demonstrate how to use the package. Most of these

applications implement the ability to build Delaunay triangulations from an input “vertex file”. The

vertex files may be given either as a text file (a tab, space, or comma separated file giving x, y, and z

coordinates) or from an industry standard lidar LAS file. Some of the applications measure software

performance or test for correctness of implementation. Others demonstrate the use of Tinfour for

performing analysis of a set of unstructured sample points.

The test applications described below are mostly small, non-interactive implementations that exercise

or demonstrate a single key feature of the Tinfour project. But the final application in this section is an

entirely different matter. The Tinfour Viewer is a user-interface based application that provides a

graphical display and interactive functions that permit a user to explore surfaces built from unstructured

data. In a sense, it is the culmination of the Tinfour development project (at least so far). As such it is the

last item discussed in this section.

3.1 The Test Environment
Both the tests and example applications are intended for use by software developers. All the current

test applications can be run from either an Integrated Development Environment (IDE) such as Netbeans

and Eclipse, or from a command-line environment. Specifications for running the test are accepted from

arguments passed in to the Java main.

3.1.1 Command-Line Arguments
The general input options for the Tinfour test and demonstration applications are described below. In

cases where an application has unique command-line options, these are given in the usage text or

documentation for the specific application. Options are not case sensitive. Boolean settings do not take

an argument, but are given in the form “-option” or “-noOption” as appropriate.

Table 6 – Input and output options

Option Arguments Description

-in File path File to be used as input source for samples. May be a .LAS
(lidar), .CSV (comma-separated-value), or character-delimited
text file (by default, space or tab). When whitespace is used as a
delimiter, Tinfour treats multiple spaces as a single element.

-delimiter Character The delimiter character to be used for a text-based input file if
something other than whitespace is used.

-out File path Output path specification for those applications that produce
file output. If the application produces multiple outputs (such as
those that produce both raster elevation grid files and image
files), the file extension will be replaced as appropriate.

Preliminary Draft

45

Table 7 – Processing options

Option Arguments Description

-cellSpace Floating point
distance

For applications that produce an output grid, the spacing
between grid cells. Spacing should be a distance specified in the
same system of units as the source data. Applications that
produce grids have the ability to select cell spacing
automatically, though an explicit setting is generally preferred
by most users.

-frame xMin xMax
yMin Ymax

For applications that can focus on a sub-region of the overall
sample set, the area-of-interest for processing. By default, the
coordinates of the “frame” are the overall bounds of the input
data set. So, unless a frame specified, the entire data set will be
considered. The frame option usually does not affect which
samples are read in from a source file. Instead, it provides
options related to the way in which the samples are processes.

-interpolator String For applications that perform interpolation, a string indicating
the interpolation method to be used:

 NaturalNeighbor (default)

 TriangularFacet

 Regression

-lidarClass Integer : 0 to 255
for a specific
classification or -1
to process all.

For files that process lidar data, the classification of the lidar
points to be included for processing. Hillshade and elevation-
related applications will default to a value of 2 (for ground
points).

-lidarThinning Floating point
value greater than
zero and less than
or equal to one.

For input files, indicates that a subset of points are to be
randomly selected. Typically used when an input file is too large
for the available memory on a system. The name of this option
is a misnomer in that it applies to all input formats.

-nTests Integer: 1 to
maximum integer
value.

For applications that perform repetitive tests, the number of
iterations to be performed. Values greater than 3 are
recommended.

-palette Named palette Palette for applications that provide color rendering of TIN.
Palettes are built in to the test applications and use the
following names:

 BlueToYellow

 PurpleTones

 RedToYellowToWHite

 Rainbow

 BlackToGray
-preAllocate, None (Boolean) Indicates if storage for edges is to be pre-allocated before

Preliminary Draft

46

-noPreAllocate building a TIN. Used to isolate the runtime cost of object
allocation version algorithm-related processing.

-preSort,
-noPreSort

Non (Boolean) Indicates whether the data should be processed using the
Hilbert sort method before building a TIN.

-seed Integer For all applications that use randomization methods to select or
generate sets of input sample point, a random seed for the
process. The seed follows the general contract of the
java.util.Random class.

-tinClass String giving fully
qualified Java class
name.

The class to be used for building the TIN. At present, two
specifications are supported:

org.tinfour.standard.IncrementalTin
org.tinfour.semivirtual.SemiVirtualIncrementalTin

Specifications follow the Java conventions and are case-
sensitive. As a shortcut, you may also use “standard” and
“semivirtual” as an argument.

-classA
-classB

String giving fully
qualified Java class
name.

Specifies the class to be test for the TwinBuildTest

Some test utilities may create a random set of unstructured input sample points. A few use grids in

which the horizontal coordinates are perturbed by small random adjustments to test for weaknesses in

the TIN-building implementation. In addition to the –seed option described above, such applications

may use the options listed below:

Table 8 – Random sample generation options

Option Argument Description

-nColumns Integer:2 to the
maximum integer
size

Number of columns in a grid

-nRows Integer: 2 to the
maximum integer
size

Number of rows in a grid

-nVertices Integer: 3 to
maximum integer
size

Number of vertices to be included in TIN.

Preliminary Draft

47

The cross-validation test application implements two unique options that are not used by other tests.

These options are related to the use of automatic bandwidth select. The automatic selection is, at this

time, heavily processor intensive and requires long run-times. Thus the ExampleCrossValidation

application provides an option to control whether automatic bandwidth selection is enabled. It also

provides an option to print out progress indicators (and estimated time to completion) as the

application performs its test.

Table 9 -- Options for cross-validation application

Option Argument Description

-autoBW,
-noAutoBW

None (Boolean).
Default false.

Enables the automatic computation of bandwidth

-showProgress,
-noShowProgress

None (Boolean).
Default false

Enables the printout of period progress reports during test
execution.

3.2 Example Applications

3.2.1 Example Elevation and Hillshade Grid from Vertex Files
The Java application ExampleGridAndHillshade can accept vertices from either a text file or an LAS lidar

file and produce both an elevation grid and a hillshade image such as the one shown in Figure 22. The

figure shows a hillshade image derived from the lidar samples covering a slightly larger region in the

vicinity of Bear Mountain area mentioned above. The area is almost entirely wooded and free of paved

roads. The linear feature that cuts across the image is an unimproved fire road. This road is used as part

of a loop trail to the Bear Mountain summit and as an access path to the Appalachian Trail which is

slightly to the southeast of the image. A footpath which leads north to the top of the mountain is faintly

visible in the lower-right corner of the image. A large cairn at the top of the mountain is clearly visible

as a “bump” in the upper right corner of the figure.

Preliminary Draft

48

This hillshade images in the figure below and in Figure 4 above were generated using an example

application called ExampleGridFromFile. The demonstration program performs the following operations:

1. Accept a command-line argument specifying an input lidar LAS file or a text file.

2. Accept a command-line argument specifying an output file path for an Esri ASCII raster file with

the extension .asc.

3. Read a set of vertices (samples) from the LAS file.

4. Determine the triangulation class based on estimated memory use and select either the

standard or semi-virtual variations for construction of a Delaunay triangulation.

5. Interpolate a grid of elevation values and store the information in the Esri ASCII raster format as

follows:

a. A grid is computed based on the extent of the input data and a cell size specified as a

command-line argument (if omitted, the overall estimated points spacing for the sample

is used). In selecting the cell-size, pick a value that is consistent with the data specified.

b. Elevations are interpolated using one of three interpolation methods that can be

specified on the command line:

i. Linear (simple triangular facets)

ii. Natural Neighbor Interpolation (the default)

iii. Linear Regression

6. Generate a hillshade image and write it to a PNG file using the following:

a. Create a Java BufferedImage instance sized according to the number of rows and

columns in the output grid computed above.

b. If the command-line arguments include a palette specification, use it to color code

elevations. If not, a flat white backdrop is used. Figure 22 was generated without the

use of a palette. Figure 4 used the “Rainbow” palette.

c. Use Tinfour’s Linear Regression interpolator to create a cubic equation describing the

surface in the vicinity of each grid point.

d. Taking the partial derivatives of the cubic equation, compute the slope in the direction

of the X and Y axes. From these slopes, obtain the vector normal to the surface at each

grid point.

e. Using a simple diffuse-lightning model and assuming a point-illumination source,

compute relative shading.

f. Adjust the brightness of the output pixels according to the illumination values and

output the image in the form of a PNG file.

Preliminary Draft

49

Figure 22 – Hillshade image derived from the Bear Mountain lidar sample

Preliminary Draft

50

3.2.2 Point Thinning using the Hilbert Sort
Figure 2 and Figure 3 both showed triangular meshes created using a subsample of the Bear Mountain

data set. The most direct method to obtain a subset from a list of samples is to loop through the list

selecting samples at fixed intervals. To reduce a set of 1000 samples to 100, simply select every tenth

sample, etc.

One shortcoming of the simple approach is that it doesn’t guarantee complete coverage of the region

defined by the sample points. This situation is exacerbated when the samples are given in random or

semi-random order with non-uniform density.

Tinfour includes an experimental application called ExampleWireframeWithThinning that was used to

produce the thinned meshes in Figure 2 and Figure 3. The application attempts to improve the coverage

of a subsample by performing a Hilbert sort on the data before selecting samples. In testing, this

approach has always yielded good results. However, the idea that it represents a significant

improvement over simple selection remains conjectural.

3.2.3 Multiple Concurrent Processes for Surface Interpolation
Tinfour constructs a TIN using a sequential process that does not benefit from concurrent processing.

But, because the interpolation and grid analysis routines operate over the TIN on a read-only basis, they

are suitable for parallel processing using Java’s multi-threading capability. The application

ExampleMultiThreadTest demonstrates how the time required for the relatively expensive process of

surface interpolation can be reduced by employing multiple concurrent threads to process data.

3.3 Test Applications

3.3.1 The Single Build Test for Correctness of Implementation
The test application SingleBuildTest builds a TIN using the input from a source file and performs post-

construction testing for correctness of implementation. It also prints out diagnostic information about

memory use and statistics about the TIN construction process.

At the end of the construction, the SingleBuildTest performs an “integrity test” to verify that the

resulting TIN conforms to the Delaunay criterion and that all data elements are properly populated. In

effect, this is a correctness-of-implementation test.

A sample output is given below.

TIN class: org.tinfour.semivirtual.SemiVirtualIncrementalTin

Input File: C:\CT_NW_Lidar\A1_Bear\bear_all.las

Number of vertices in file (all classes): 4874727

Number of vertices to process: 1036887

Range x values: 627000.000, 628000.010, (1000.010000)

Range y values: 4654999.980, 4655999.990, (1000.010000)

Range z values: 538.434, 709.032, (170.597961)

Est. sample spacing: 0.862

Time for pre-sort: 460.14

Preliminary Draft

51

Pre-alloc is not used

Begin insertion

Time build TIN: 2961.20

Total time for TIN: 2961.20

Checking memory

Memory use (bytes/vertex)

 All objects: 120.48

 Vertices only: 44.08

 Edges and other elements: 76.40

Total for application (mb): 316.00

Descriptive data

Number Vertices Inserted: 1036887

Coincident Vertex Spacing: 0.000010

 Sets: 8

 Total Count: 16

Number Edges On Perimeter: 37

Number Ordinary Edges: 3110597

Number Ghost Edges: 37

Number Edge Replacements: 5096883 (avg: 4.9)

Max Edge Replaced by add op: 70

Average Point Spacing: 1.12

Application's Nominal Spacing: 1.00

Number Triangles: 2073719

Average area of triangles: 0.482

Samp. std dev for area: 0.310

Minimum area: 0.000300

Maximum area: 14.024

Total area: 999993.4

Construction statistics

Number of SLW walks: 1036887

 exterior phase: 6947

 tests: 6364282

 extended: 1124

 avg steps to completion: 3.12

InCircle calculations: 13273748

 extended: 14

 conflicts: 0

Edge pool diagnostics

 Edges allocated: 3110634

 Edges free: 278

 Pages: 3038

 Partially used pages: 1

 Total allocation operations: 3173435

 Total free operations 62801

Performing integrity check

Test complete

Preliminary Draft

52

3.3.2 The Repeated Build Test for Performance Evaluation
The repeated build provides a way of assessing the performance of the Tinfour implementation. To do

so, it runs the sample data repeatedly, measuring the time required for builds. In the example output

text below, note that the processing time for the first two tests is slightly longer than those of

subsequent tests. This effect is due to the cost of the Java class loader and JIT compiler in the initial

stages of execution. Experience shows that some systems take as many as three iterations for the run

times to settle down to a steady state. Therefore, the first three tests runs are not included in the

overall averages.

Date of test: 24 Feb 2016 02:09 UTC

Input file: C:\CT_NW_Lidar\A1_Bear\bear_partial.las

TIN class: org.tinfour.tin.IncrementalTin

Time for pre-sort 0.0

Number of vertices 287889

run, build, avg_build, total_mem, alloc_time

 0, 600.949, 0.000, 68.819, 1314.329

 1, 475.069, 0.000, 68.825, 205.250

 2, 415.067, 0.000, 68.825, 130.842

 3, 428.102, 428.102, 68.825, 122.653

 4, 424.691, 426.397, 68.825, 129.509

 5, 406.460, 419.751, 68.825, 77.295

 6, 403.428, 415.670, 68.825, 61.259

 7, 413.498, 415.236, 68.825, 119.233

Avg max removed: 412.019

3.3.3 The Twin Build Test for Tuning Performance and Optimization
Optimization and performance tuning can be tricky subjects. Sometimes, the most promising concepts

turned out to be major disappointments. Ideas that seemed like “no-brainers” revealed themselves to

be gross misconceptions. Logic that succeeded in unit tests actually slowed down processing when

integrated into the code base.

The software development effort for Tinfour included extensive experiments with different ideas and

approaches for improving processing speed using an application called TwinBuildTest. The

TwinBuildTest is designed to overcome the fact that a modern operating system is a noisy test

environment. It is difficult to control or even predict when background processes, security software, or

other system processes will compete with a test program for resources. To provide an objective

measurement of how changes to the code affected performance, the development process depended

on a “twin build test”.

1. Implement two versions of the same mesh-building class (or classes) introducing the software

approach to be tested in one of them.

2. Repeatedly run both versions in the same Java process, alternating approaches. Record the run

time for each.

3. Inspect the run times for and observe trends. Compare the relative time required for processing

by each. If the statistics includes obviously anomalies, throw away the results and run the test

again.

Preliminary Draft

53

The following text shows the output from a test that compared the time to build a TIN from a lidar

sample containing about 290 thousand points running on a computer with limited resources and CPU

power. Internally, Tinfour uses a buffer that permits it to reuse edges when building a TIN. The test

evaluated whether the buffer was actually contributing to performance. The TwinBuildTest was used to

compare a standard implementation (Class A) to a version in which the buffer was disabled (Class B).

Run times are given in milliseconds. As in the repeated build test, the first three run times are not

included in the tabulated results.

TwinBuildTest

Date: 27 Dec 2015 16:57

Class A: org.tinfour.standard.IncrementalTin

Class B: org.tinfour.standard.IncrementalTin1

Preallocation enabled: true

Sample Data: C:\CT_NW_Lidar\A1_Bear\bear_partial.las

Number of vertices 287889

27 Dec 2015 16:57 UTC

run, build1, avg_build1, build2, avg_build2

 0, 3160.465, 0.000, 2308.458, 0.000

 1, 1607.773, 0.000, 1599.363, 0.000

 2, 747.325, 0.000, 805.106, 0.000

 3, 749.661, 749.661, 804.241, 804.241

 4, 764.466, 757.064, 812.882, 808.562

 5, 744.030, 752.719, 811.557, 809.560

 6, 749.223, 751.845, 815.042, 810.931

 7, 776.388, 756.754, 805.807, 809.906

avg with max removed 751.845, 808.622

comparative time method a/b: 0.9297858109283054

comparative time method b/a: 1.0755165203065342

The average run time for the standard implementation is about 750 milliseconds while that for the

modified implementation is about 800 milliseconds. So the version with the buffer runs about 7 percent

faster than the version without. The results give evidence that the buffer is an effective performance

enhancement and should remain in the implementation.

Looking down the columns of values, note that the run times for the two methods were fairly consistent,

indicating a fairly stable system environment during the test. Sometimes, the entries in a column will

bounce around in an apparently random manner, indicating that something may have been happening

on the system that competed with the test application for resources. In testing, it is common for the

data may include just one run that is substantially longer than all others. This happens often enough

that the twin-build test application automatically disregards the worst run of the main series when

tabulating statistics. However, in cases where the run times are obviously inconsistent, it is best to

simply discard the results and run the test again.

The Twin Build Test application accepts two special command line arguments, -classA and -classB which

given the fully qualified names for the classes to be tested. By default it uses the standard

IncrementalTin and semi-virtual SemiVirtualIncrementalTin.

Preliminary Draft

54

3.3.4 Time to Process TIN Due to Sample Size
The TimeDueToSampleSize test preforms repeated build operations in which it randomly selects a

subset of input data from a sample set and measures the time to build it. Because the size of each

random selection is varied, this test application provides a realistic method for measuring the actual cost

of processing a TIN as a function of the number of input vertices.

3.4 The Tinfour Viewer
When first considering a software package like Tinfour, it is reasonable to ask questions like "what is it

good for?" and "what can I do with it?" These notes were intended, at least in part, to address those

questions. And so it seems natural that they conclude with a discussion application that integrates the

major features of Tinfour into a single application which demonstrates its capabilities. The Tinfour

Viewer is uses the Delaunay Triangulation as a tool for viewing and analyzing surfaces built from

unstructured data. The figure below shows a screenshot from Tinfour Viewer taken while inspecting a

lidar sample collected near a highway overpass where I-95 crosses Church Street in Guilford, CT.

Figure 23 – Tinfour Viewer image constructed from lidar data over Church Street and I-95 in Guilford, CT (data source NOAA,
2011b).

Preliminary Draft

55

The Viewer application combines many of the major functions from Tinfour that were discussed in the

example applications above including:

1. Elevation modeling and surface interpolation use for raster rendering.

2. Hillshade functions.

3. Point-thinning to produce reduced-complexity meshes for inspection in the “wireframe” option.

4. Concurrent processing to speed production of raster images.

5. Interactive data queries for inspecting samples.

The wireframe option is used to depict the structure of the TIN. By using the point-thinning techniques

described above, it manages the density of the points according to the scale of view. The figure below

was produced from data collected in a coastal region near Byram Connecticut and processed to thin the

number of points by a factor 256 to 1. One interesting feature of the display is that the density of points

is not uniform across the collection area. Conventional lidar systems use infrared laser sources that are

generally scattered rather than reflected by water surfaces. So it is common for the sample density to

drop off sharply over water. In the figure below, only a few data samples were obtained over the water

area. Thus the distribution of samples in the picture reflects the different surface characteristics in the

sample.

Figure 24 – Wireframe rendering of lidar sample in coastal region (data source NOAA, 2011c)

Preliminary Draft

56

4 Lidar Data Samples
Many examples provided in these notes use Lidar products as a data source. Laser-measured elevation

data sets offer a good test case for Tinfour implementations because they are large and because the

real-world data they provide describes features with which all of us are familiar. If you wish to download

and use Lidar products for your own use, there are a few issues with which you should be familiar.

4.1 LAS and LAZ Format
LAS is an industry standard format for the exchange of Lidar data. It is a non-proprietary standard that

was developed by the American Society for Photogrammetry & Remove Sensing (ASPRS) to promote the

sharing of Lidar information. Because LAS is a straightforward, binary format that follows modern

computer numeric data representation standards, it promotes efficient processing and reasonably

compact data storage. LAS files also support random-access read operations, a feature which permits

applications to better manage the amount of data that is read into memory when processing Lidar data.

Finally, the LAS format has a clean, simple design that made it easy to write code for the Tinfour library

that would read LAS files directly.

The LAS format is described at http://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf

Of course, even though LAS using an efficient binary representation of data, the sheer volume of Lidar

data samples lead to very large file sizes. Data size is particularly an issue when downloading data via

the Internet because LAS files do not compress well using conventional tools such as ZIP.

Fortunately, an independent software developer named Martin Isenburg developed a variation of LAS

named LAZ which embeds data compression into the format. Because the compression is customized

specifically for the representation of Lidar data, it achieves excellent size reduction ratios. Also, the

implementation makes smart choices that preserve the random-access capabilities of the original. Best

of all, Mr. Isenburg released his compression utility as an open-source project which has led to the

widespread adoption of LAZ as an industry standard.

The data compression algorithms used by the LAZ format are fairly sophisticated and were only recently

implemented in Java by Reutegger (2016) in the laszip2j project. The laszip2j library is currently used by

the Tinfour test and data viewer applications.

4.2 Ground Points and Lidar Data Classification
When Lidar data is collected from an aircraft, the elevation-measuring sensors don't know if the features

that are reflecting their laser sources are flat ground, trees, bushes, or man-made structure. In fact, it is

not uncommon for Lidar to detect birds or swarms of insects. So when Lidar data is prepared for

distribution, it usually goes through a post-collection "classification" process in which each

measurement is categorized according to what kind of object produced the sample. As you can imagine,

this process is computationally intensive and often involves the use of supplemental data sources such

as multi-spectral imagery (aerial photographs) and ground-based survey information. By convention all

samples from a survey are included in a LAS data set. Nothing is thrown away. Even those that are

Preliminary Draft

57

rejected as anomalous are simply marked as "unclassified" or "withheld" (one man's anomalous data is

another's "research find").

The LAS standard defines several categories for data and assigns each a numeric code. The most

important of these is the "ground point" classification, which is assigned the numeric index 2. Other

classifications – including surface water, roads, vegetation, etc. – are described in the LAS specification

(ASPRS, 2013). The example applications provided by Tinfour primarily focus on ground-point data,

though there is nothing in the software package that would limit the use of other data classifications.

4.3 Geographic Coordinates
Native Lidar data is rarely collected using geographic coordinates. As discussed in paragraph 2.2.9

Coordinates and Numerical Issues geographic coordinates are not isotropic and so provide a poor

representation of 3D features over the small area of the Earth's surface that comprises a Lidar survey. So

in order to facilitate geospatial analysis on 3D data samples, Lidar collections will usually base the

horizontal coordinate system on coordinates projected to a plane using well established mapping

techniques. For example, the above cited Lidar samples taken in Connecticut were originally collected

using horizontal coordinates based on the Universal Transverse Mercator Zone 18N map projection.

Distribution of Lidar data is another matter. One of the largest collections of Lidar data available on the

web is the NOAA Coastal Lidar repository. For various reasons, NOAA has elected to convert all the data

in its collection to geographic coordinates. Converting the original Lidar data to geographic coordinates

presents two problems:

1. The data is no longer in its original format because the horizontal coordinates (and perhaps the

vertical coordinates) have undergone a mathematical transformation.

2. Because the data is non-isotropic, the horizontal coordinates needs to be projected to a flat

coordinate plane for processing.

In NOAA's defense, they've elected to convert Lidar data from hundreds of different surveys based on

dozens of incompatible horizontal coordinate systems to a single unified geographic coordinate system,

one which non-GIS practitioners are familiar with. However, it means that before the data can be

analyzed by Tinfour, it needs to be converted.

The LAS access classes provided by Tinfour do this conversion automatically, though the implementation

is still a bit rough and lacks important features (it does not use metadata from the LAS files, but deduces

that coordinates are geographic and assumes that the vertical units are in meters). If you require more

control over the representation of data, the lastools library includes tool that permit you to convert the

horizontal coordinate system in LAS files from geographic to projected values.

Preliminary Draft

58

5 References

Bowyer, Adrian (1981). “Computing Dirichlet tessellations”, The Compute Journal 24(2), p. 162-166.

Cheng, Siu-Wing; Dey, Tamal Krishna; Shewchuk, Jonathan R. (2013). Delaunay Mesh Generation. Boca

Raton, FL: CRC Press.

Delaunay, Boris (1934). "Sur la sphère vide", Otdelenie Matematicheskikh i Estestvennykh Nauk 7,

p. 793–800

Guibas, L., Stolfi, J (1985). “Primitives for the Manipulation of General Subdivisions and the Computation

of Voronoi Diagrams”, ACM Transactions on Graphics, Vol 4, No. 2, April 1985, p 74-123.

Hilbert, D. (1891). “Ueber die stetige Abbildung einer Linie auf ein Flächenstück”, Mathematische

Annalen 38 (1891), 459-460. Accessed from

http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002253135

Lawson, C.L. (1977). “Software for C1 surface interpolation”, Mathematical Software III, Rice, J.R. ed.,

pages 161-194, Academic Press, NY.

Leung, Yee , Chang-Lin Mei, Wen-Xiu Zhang (2000).”Statistical Tests for Nonstationarity Based on the

Geographically Weighted Regression Model”, Environment and Planning A, vol.32, 2000, p.9-32.

Natural Earth (2017) “Free vector and raster map data at 1:10m, 1:50m, and 1:110m scales”. Accessed

October 2017 from http://www.naturalearthdata.com/.

Pennsylvania, Commonwealth of, Department of Conservation and Natural Resources, Bureau of

Topographic and Geologic Survey (2006). PAMAP Program LAS Files (LiDAR Data of Pennsylvania).

Website. Accessed December 2015 from http://www.pasda.psu.edu

Peckham, S. (2011). “Profile, Plan, and Streamline Curvature: A Simple Derivation and Applications”.

Electronic document downloaded March 2016 from http://geomorphometry.org/Peckham2011a

Reutegger, Marcel (2016). “laszip4j – The LASzip library ported to Java”. Accessed February 2017 from

https://github.com/mreutegg/laszip4j

Rognant, et al (1999). The Delaunay constrained triangulation: The Delaunay stable algorithms. "IEEE

International Conference on Information Visualization 1999", pg. 147-152.

Shewchuk, Jonathan R. (1996). “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay

Triangulator”, Applied Computational Geometry: Towards Geometric Engineering, ed. Lin, Min C, &

Manocha, Dinesh, Lecture Notes in Computer Science, vol. 1148, pages 203-222, Springer-Verlag, Berlin,

May 1996. Downloaded December 2015 from http://www.cs.cmu.edu/~quake/tripaper/triangle0.html

Sibson, Robin (1981). “A Brief Description of Natural Neighbor Interpolation”. Interpreting Multivariate

Data, pages 21-36. Ed. Barnett, V., John Wiley & Sons, Inc. Chichester (1981).

http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002253135
http://www.naturalearthdata.com/
http://www.pasda.psu.edu/uci/MetadataDisplay.aspx?entry=PASDA&file=pamap_lidar_LAS.xml&dataset=1244
http://geomorphometry.org/Peckham2011a
https://github.com/mreutegg/laszip4j
http://www.cs.cmu.edu/~quake/tripaper/triangle0.html

Preliminary Draft

59

Soukal, R., Málková, M., Kolingerová, I. (2012). “Walking algorithms for point location in TIN models”,

Computational Geoscience vol. 16, pages 853-869.

Su, P., Drysdale, R. (1996). “A comparison of sequential Delaunay triangulation algorithms”,

Computational Geometry 7 (1997) p. 361-385

U.S. Geological Survey [USGS] (2014). “USGS Lidar Point Cloud (LPC) OR_PoleCreek_2013_000100 2014-

09-26 LAS”. Downloaded December 2015 from

https://www.sciencebase.gov/catalog/item/542fe8d4e4b092f17df623c7

U.S. National Oceanic and Atmospheric Administration [NOAA] Coastal Services Center (2011a). “2011

U.S. Department of Agriculture- Natural Resources Conservation Service (USDA-NRCS) Topographic

Lidar: North West Connecticut” , file 20111217_18TXM2755.laz. FTP site. Downloaded December 2015

from ftp://coast.noaa.gov/pub/DigitalCoast/lidar1_z/geoid12a/data/2597/

U.S. National Oceanic and Atmospheric Administration [NOAA] Coastal Services Center (2011b). “2011

FEMA Lidar: Quinnipiac River Watershed (CT) Point Cloud files with Orthometric Vertical Datum NAVD88

using GEOID12A”, file 18_06934574.laz. FTP site. Downloaded December 2015 from

https://coast.noaa.gov/htdata/lidar1_z/geoid12a/data/1472/

U.S. National Oceanic and Atmospheric Administration [NOAA] Coastal Services Center (2015). “Lidar

Datasets at NOAA Digital Coast” Website. Accessed December 2015 from

https://coast.noaa.gov/htdata/lidar1_z/

Walpole, R., and Myers, R. (1989). Probability and Statistics for Engineers and Scientists (4th ed.).

Macmillan Publishing Company, New York City (1989).

Warren, Henry S., Jr. (2013) Hackers Delight, 2nd Edition. Pearson Education, Inc. Upper Saddle River,

New Jersey (2013).

Watson, David F. (1981). “Computing the n-dimensional Delaunay t tessellation with application to

Voronoi polytropes”, The Compute Journal 24(2), p. 167-173.

Wheeler, David C., Páez, Antonio (2010). “Geographically Weighted Regression”, Handbook of Applied

Spatial Analysis: Software Tools, Methods and Applications, pages 461-486, Springer-Verlag, Berlin 2010.

Wilson, John P., Gallant, John C. (2000). Terrain Analysis: Principles and Applications. John Wiley & Sons,

Inc. New York (2000).

https://www.sciencebase.gov/catalog/item/542fe8d4e4b092f17df623c7
ftp://coast.noaa.gov/pub/DigitalCoast/lidar1_z/geoid12a/data/2597/
https://coast.noaa.gov/htdata/lidar1_z/geoid12a/data/1472/
https://coast.noaa.gov/htdata/lidar1_z/

